I think Vatine’s answer is probably the way to go, but I already typed
this up and it may be useful, for this or for someone else’s similar
problem.
I don’t have time this morning for a detailed answer, but consider this.
1^2 + 2^2 + 3^2 + ... + n^2 would take O(n) steps to compute directly.
However, it’s equivalent to (n(n+1)(2n+1)/6), which can be computed in
O(1) time. A similar equivalence exists for any higher integral power
x.
There may be a general solution to such problems; I don’t know of one,
and Wolfram Alpha doesn’t seem to know of one either. However, in
general the equivalent expression is of degree x+1, and can be worked
out by computing some sample values and solving a set of linear
equations for the coefficients.
However, this would be difficult for large x, such as 1000 as in your
problem, and probably could not be done within 2 seconds.
Perhaps someone who knows more math than I do can turn this into a
workable solution?
Edit: Whoops, I see Fabian Pijcke had already posted a useful link about Faulhaber's formula before I posted.