Consider the $3 \times 3$ matrix
$$A =
\begin{pmatrix}
1 & 1 & 2 \\
0 & 1 & -4 \\
0 & 0 & 1
\end{pmatrix}.$$
I am trying to find $e^{At}$.
The only tool I have to find the exponential of a matrix is to diagonalize it. $A$'s eigenvalue is 1. Therefore, $A$ is not diagonalizable.
How does one find the exponential of a non-diagonalizable matrix?
My attempt:
Write $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix} = M + N$, with $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $N = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & -4 \\ 0 & 0 & 0 \end{pmatrix}$.
We have $N^3 = 0$, and therefore $\forall x > 3$, $N^x = 0$. Thus:
$$\begin{aligned} e^{At} &= e^{(M+N)t} = e^{Mt} e^{Nt} \\ &= \begin{pmatrix} e^t & 0 & 0 \\ 0 & e^t & 0 \\ 0 & 0 & e^t \end{pmatrix} \left(I + \begin{pmatrix} 0 & t & 2t \\ 0 & 0 & -4t \\ 0 & 0 & 0 \end{pmatrix}+\begin{pmatrix} 0 & 0 & -2t^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\right) \\ &= e^t \begin{pmatrix} 1 & t & 2t \\ 0 & 1 & -4t \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} e^t & te^t & 2t(1-t)e^t \\ 0 & e^t & -4te^t \\ 0 & 0 & e^t \end{pmatrix}. \end{aligned}$$
Is that the right answer?