Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. Join them; it only takes a minute:

Sign up
Here's how it works:
  1. Anybody can ask a question
  2. Anybody can answer
  3. The best answers are voted up and rise to the top

If $A = \begin{bmatrix}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, then find $A^{30}$.

The problem here is that it has only two eigenvectors, $\begin{bmatrix}0\\1\\1\end{bmatrix}$ corresponding to eigenvalue $1$ and $\begin{bmatrix}0\\1\\-1\end{bmatrix}$ corresponding to eigenvalue $-1$. So, it is not diagonalizable.

Is there any other way to compute the power?

share|cite|improve this question
1  
You can use the Cayley-Hamilton theorem to obtain constants $a,\,b,\,c$ with $A^3=aA^2+bA+cI$, so $A^{n+3}=aA^{n+2}+bA^{n+1}+cA^n$. You can then find $A^{30}$ by recurrence. In fact, you can combine with this the technique in mathematician's answer, e.g. get $A^4$ in terms of $I,\,A,\,A^2$, square to get $A^8$ etc. – J.G. yesterday
1  
You can write the matrix in Jordan form, $A=PJP^{-1}$, and then use standard results about powers of Jordan matrices. – symplectomorphic yesterday

Notice the characteristic polynomial of $A$ is $$\chi_A(\lambda) \stackrel{def}{=}\det(\lambda I_3 - A) = \lambda^3-\lambda^2-\lambda+1 = (\lambda^2-1)(\lambda-1)$$ By Cayley-Hamilton theorem, we have

$$\chi_A(A) = (A^2 - I)(A-I) = 0 \quad\implies (A^2-I)^2 = (A^2-I)(A-I)(A+I) = 0$$

This means $A^2-I$ is nilpotent. In following binary expansion of $A^{30}$

$$A^{30} = (I + (A^2 - I))^{15} = \sum_{k=0}^{15} \binom{15}{k}(A^2-I)^k$$

only the term $k = 0$ and $1$ contributes. i.e.

$$A^{30} = I + 15 (A^2-I) = \begin{bmatrix} 1 & 0 & 0\\ 15 & 1 & 0\\ 15 & 0 & 1 \end{bmatrix} $$

share|cite|improve this answer
    
Thank you for such a wonderful solution. :) – Prince Kumar 13 hours ago

You can use repeated squaring to efficiently compute large powers.

$$ A^{30} = A^{16} \cdot A^8 \cdot A^4 \cdot A^2$$

where $A^4 = {A^2} ^2$, $A^8= {A^4}^2$, etc.

share|cite|improve this answer

Since the given matrix is rather simple, you could also compute a few powers:

\begin{align*} A^1&= \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}\\ A^2&= \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}\\ A^3&= \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}\\ A^4&= \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}\\ A^5&= \begin{pmatrix} 1 & 0 & 0 \\ 3 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}\\ A^6&= \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}\\ \end{align*}

Can you notice some kind of pattern and prove it by induction? (Or, if you prefer, you can do the same thing with $B=A^2$ and try to find general form of $B^n$.)


Of course, this is "naive" approach - without using any theory you have learned about matrices. For more complicated matrices it would be rather difficult to spot some kind of pattern. That's why methods which work for arbitrary matrices are more useful.

share|cite|improve this answer

Given $\mathrm A$, we compute one Jordan decomposition, $\mathrm A = \mathrm P \mathrm J \mathrm P^{-1}$, where

$$\mathrm J = \begin{bmatrix} -1 & 0 & 0\\ 0 & 1 & 1\\ 0 & 0 & 1\end{bmatrix}$$

Note that $\mathrm A^{30} = \mathrm P \mathrm J^{30} \mathrm P^{-1}$. Since $(-1)^{30} = 1$ and $\begin{bmatrix} 1 & 1\\ 0 & 1\end{bmatrix}^{30} = \begin{bmatrix} 1 & 30\\ 0 & 1\end{bmatrix}$, we have

$$\mathrm J^{30} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 30\\ 0 & 0 & 1\end{bmatrix}$$

Thus,

$$\mathrm A^{30} = \mathrm P \mathrm J^{30} \mathrm P^{-1} = \cdots = \begin{bmatrix} 1 & 0 & 0\\ 15 & 1 & 0\\ 15 & 0 & 1\end{bmatrix}$$

share|cite|improve this answer

Generalized eigenvector $\;u_1=\begin{pmatrix}a\\b\\c\end{pmatrix}\;$for $\;\lambda=1\;$ :

$$Au_1=1\cdot u_1+v_1\iff \begin{pmatrix}a\\a+c\\b\end{pmatrix}=\begin{pmatrix}a\\b\\c\end{pmatrix}+\begin{pmatrix}0\\1\\1\end{pmatrix}\implies \begin{cases}b=c+1\\{}\\a+c=b+1\end{cases}\implies \begin{cases}a=2\\{}\\b=1\\{}\\c=0\end{cases}$$

$$\implies u_1=\begin{pmatrix}2\\1\\0\end{pmatrix}\;,\;\;\text{so define}\;\;P:=\begin{pmatrix}0&2&0\\1&1&1\\1&0&\!\!-1\end{pmatrix}\implies P^{-1}=\frac14\begin{pmatrix}\!\!-1&2&2\\2&0&0\\\!\!-1&2&\!\!-2\end{pmatrix}$$

and now:

$$P^{-1}AP=\frac14\begin{pmatrix}\!\!-1&2&2\\2&0&0\\\!\!-1&2&\!\!-2\end{pmatrix}\begin{pmatrix}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}\begin{pmatrix}0&2&0\\1&1&1\\1&0&\!\!-1\end{pmatrix}=\begin{pmatrix}1&1&0\\0&1&0\\0&0&\!\!-1\end{pmatrix}\implies$$

$$A^{30}=P\begin{pmatrix}1&1&0\\0&1&0\\0&0&\!\!-1\end{pmatrix}P^{-1}$$

You can now check that taking powers of the above quasi-diagonal matrix ( i.e., the Jordan Canonical Form for $\;A\;$) is very easy, though not as easy as with diagonal matrices, of course.

share|cite|improve this answer

Your Answer

 
discard

By posting your answer, you agree to the privacy policy and terms of service.

Not the answer you're looking for? Browse other questions tagged or ask your own question.