Let $A \in \mathrm{U}(n) \subset \mathbb{C}^{n \times n}$ a unitary matrix. Show that: $\exists ~ S\in \mathrm{U}(n)$ so that
$\bar{S^t}AS=D:=\begin{pmatrix}\lambda_1&&0\\&\ddots & &\\0&&\lambda_n\end{pmatrix}$
where $\lambda_i\in \mathbb{C}$ are eigenvalues of $A$. Show moreover, that $|\lambda_i|=1$.
My idea is to show that the orthogonal complement $W$ of an eigenvector $v$ of $A$ from $A$ is mapped into itself, meaning $AW \subset W$. But how to start this?
Let $\lambda\in \mathbb{C}$ be an eigenvalue and $v \in \mathbb{C}$ a corresponding eigenvector with $|v|$=1. Let $W\perp v = \{w \in \mathbb{C}^n|\langle w,v\rangle=0\}$ an orthogonal vector subspace to $v$.
${\langle Aw,v\rangle}=\overline{\langle v,Aw\rangle}=\overline{\langle v,\lambda w\rangle}=\lambda \overline{\langle v,w\rangle}=\lambda\cdot 0=0$,
so $Aw\in v^{\perp}=W$.
So now choose a basis of $W$ with normalized vectors $v_2,\ldots,v_n$ perpendicular to each other (Gram–Schmidt process). Be $v_1:=v$ and $S:=(v_1,v_2,\ldots,v_n) \in \mathrm{GL}(n,\mathbb{C})$. Then one has: $\langle v_i,v_i\rangle=1\ \forall i$, $\langle v_i,v_j\rangle=0\ \forall i \neq j $. Let $w_j:=Av_j\in W, j=2,\ldots,n$
$\Rightarrow \overline{S}^tAS=\overline{S}^t(\lambda v_1,w_2,\ldots,w_n)=\begin{pmatrix}\lambda&0&0&0\\0&& & &\\0&&B\\0\end{pmatrix}.$
Is this correct so far? Why is $S$ orthogonal?
