Google Research Blog
The latest news from Research at Google
Information sharing for more efficient network utilization and management
Thursday, September 17, 2015
Andreas Terzis, Software Engineer
As Internet traffic has grown and changed, Google and other content and application providers have worked cooperatively with Internet service providers (ISPs) so that services can be delivered quickly, efficiently and cost-effectively. For example, rather than content having to traverse a long distance and many different networks to reach an Internet access provider’s network, a content provider might store (cache) the data close by and interconnect (‘peer’) directly with the access provider. Google has invested billions of dollars in the network and infrastructure necessary to bring our services as close to your Internet access provider’s front door as possible, for free – which both reduces ISPs’ costs and improves the user experience.
Content and application providers can also tune their services for congested and/or lower bandwidth environments. For instance, YouTube detects how smoothly a video is playing and adjusts the quality to account for temporary fluctuations in bandwidth or congestion. In the
Google Video Quality Report
, we transparently reveal the speeds YouTube is experiencing on different networks.
As more of Internet traffic becomes encrypted, some network operators have expressed concern about the effect encryption might have on their ability to manage their networks. We don’t think there has to be a trade-off here – there are ways to do effective network management of encrypted traffic today, and, through further cooperation between content and application providers and ISPs, we believe this could be made easier while still respecting encryption.
To spur discussion and collaboration on this front, we recently submitted a
paper
to a workshop organized by the
Internet Architecture Board
outlining some ideas. We advocate for a model where ISPs selectively share network state to content and applications providers, enabling them to adapt to available network resources.
For example, we recently proposed to the
Internet Engineering Task Force
the concept of
Throughput Guidance
(TG), whereby mobile network operators could share information about the throughput of a radio downlink. Preliminary field tests in a production LTE network showed that TG reduces YouTube join latency, defined as the amount of time until the video starts playing, by 8% on average, rebuffering time by 20% on average, and rebuffer count by 2% on average. In addition to improving quality of experience for users, this mechanism improves the utilization of providers’ networks. Encryption of traffic would have no impact on the efficacy of this approach; it works equally well with encrypted and unencrypted traffic.
Throughput Guidance is one possible solution and many questions remain unanswered. It’s still relatively early days in our exploration of this and the other measures in our short paper, and we’re looking forward to getting feedback and collaborating with network operators and others.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
Android
API
App Engine
App Inventor
April Fools
Audio
Australia
Automatic Speech Recognition
Awards
Cantonese
China
Chrome
Cloud Computing
Collaboration
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
data science
datasets
Deep Learning
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Exacycle
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Genomics
Gmail
Google Books
Google Drive
Google Science Fair
Google Sheets
Google Translate
Google Voice Search
Google+
Government
grants
HCI
Health
High Dynamic Range Imaging
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
KDD
Klingon
Korean
Labs
Linear Optimization
localization
Machine Hearing
Machine Intelligence
Machine Learning
Machine Translation
MapReduce
market algorithms
Market Research
ML
MOOC
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
Ngram
NIPS
NLP
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
ph.d. fellowship
PiLab
Policy
Professional Development
Public Data Explorer
publication
Publications
Quantum Computing
renewable energy
Research
Research Awards
resource optimization
Search
search ads
Security and Privacy
SIGCOMM
SIGMOD
Site Reliability Engineering
Software
Speech
Speech Recognition
statistics
Structured Data
Systems
TensorFlow
Translate
trends
TTS
TV
UI
University Relations
UNIX
User Experience
video
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
YouTube
Archive
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleresearch
Give us feedback in our
Product Forums
.