Post has attachment
Public
Add a comment...
Post has attachment
New ESA technology-testing CubeSat to launch with China's seismo-electromagnetic satellite in February (plus Danish and Argentinian sats) #satellite #cubesat #esa #space
Add a comment...
Post has attachment
New job opportunities in several domains on board at #ESA and more! Do we have the right position for you? Discover our website and apply now for your preferred job:
Add a comment...
Post has attachment
Add a comment...
Post has attachment
Reflection nebula NGC 1999
This spooky sight, imaged by the NASA/ESA Hubble Space Telescope, resembles fog lit by a streetlamp swirling around a curiously shaped hole – and there is some truth in that. While the ‘fog’ is dust and gas lit up by the star, the ‘hole’ really is an empty patch of sky.
When the dark patch was first imaged, it was assumed to be a very cold, dense cloud of gas and dust, so thick as to be totally opaque in visible light, and blocking all light behind it. In general, such globules are known to be small cocoons of forming stars, but thanks to ESA’s Herschel Space Observatory, which would have been able to see any hints of star formation at infrared wavelengths but did not, along with ground-based observations, it turned out to be a truly empty patch of sky.
Astronomers think that is was formed when jets of gas from some of the young stars in the wider region punctured the sheet of dust and gas that forms the surrounding nebula. The powerful radiation from a nearby mature star may also have helped to clear the hole.
The bright star seen here is V380 Orionis, a young star 3.5 times the mass of our own Sun. It appears white owing to its high surface temperature of about 10 000ºC – nearly twice that of the Sun. The star is so young that it is still surrounded by a cloud of material left over from its formation. This bright material in the area pictured here is only visible because of the light from the star; it does not emit any visible light of its own. This is the signature of a ‘reflection nebula’ – this one is known as NGC 1999.
Image & info via ESA
http://www.esa.int/spaceinimages/Images/2017/10/Reflection_nebula_NGC_1999
Credit: NASA and The Hubble Heritage Team (STScI)
#ESA #space #Hubble #nebula #science #NGC1999
This spooky sight, imaged by the NASA/ESA Hubble Space Telescope, resembles fog lit by a streetlamp swirling around a curiously shaped hole – and there is some truth in that. While the ‘fog’ is dust and gas lit up by the star, the ‘hole’ really is an empty patch of sky.
When the dark patch was first imaged, it was assumed to be a very cold, dense cloud of gas and dust, so thick as to be totally opaque in visible light, and blocking all light behind it. In general, such globules are known to be small cocoons of forming stars, but thanks to ESA’s Herschel Space Observatory, which would have been able to see any hints of star formation at infrared wavelengths but did not, along with ground-based observations, it turned out to be a truly empty patch of sky.
Astronomers think that is was formed when jets of gas from some of the young stars in the wider region punctured the sheet of dust and gas that forms the surrounding nebula. The powerful radiation from a nearby mature star may also have helped to clear the hole.
The bright star seen here is V380 Orionis, a young star 3.5 times the mass of our own Sun. It appears white owing to its high surface temperature of about 10 000ºC – nearly twice that of the Sun. The star is so young that it is still surrounded by a cloud of material left over from its formation. This bright material in the area pictured here is only visible because of the light from the star; it does not emit any visible light of its own. This is the signature of a ‘reflection nebula’ – this one is known as NGC 1999.
Image & info via ESA
http://www.esa.int/spaceinimages/Images/2017/10/Reflection_nebula_NGC_1999
Credit: NASA and The Hubble Heritage Team (STScI)
#ESA #space #Hubble #nebula #science #NGC1999

Post has shared content
Mega galactic fusion..
By +Giovanni Lo Cascio
#Astronomy #NASA #Hubble #ESA #SETI #ISS #Science #Science64
By +Giovanni Lo Cascio
#Astronomy #NASA #Hubble #ESA #SETI #ISS #Science #Science64
HST.. Mega galactic fusion ..
The subject of this NASA/ESA Hubble Space Telescope image is known as NGC 3597. It is the product of a collision between two good-sized galaxies, and is slowly evolving to become a giant elliptical galaxy. This type of galaxy has grown more and more common as the universe has evolved, with initially small galaxies merging and progressively building up into larger galactic structures over time.
NGC 3597 is located approximately 150 million light-years away in the constellation of Crater (The Cup). Astronomers study NGC 3597 to learn more about how elliptical galaxies form — many ellipticals began their lives far earlier in the history of the universe. Older ellipticals are nicknamed “red and dead” by astronomers because these bloated galaxies are not anymore producing new, bluer stars, and are thus packed full of old and redder stellar populations.
Before infirmity sets in, some freshly formed elliptical galaxies experience a final flush of youth, as is the case with NGC 3597. Galaxies smashing together pool their available gas and dust, triggering new rounds of star birth. Some of this material ends up in dense pockets initially called proto-globular clusters, dozens of which festoon NGC 3597. These pockets will go on to collapse and form fully-fledged globular clusters, large spheres that orbit the centers of galaxies like satellites, packed tightly full of millions of stars.
Text credit: European Space Agency
Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
The subject of this NASA/ESA Hubble Space Telescope image is known as NGC 3597. It is the product of a collision between two good-sized galaxies, and is slowly evolving to become a giant elliptical galaxy. This type of galaxy has grown more and more common as the universe has evolved, with initially small galaxies merging and progressively building up into larger galactic structures over time.
NGC 3597 is located approximately 150 million light-years away in the constellation of Crater (The Cup). Astronomers study NGC 3597 to learn more about how elliptical galaxies form — many ellipticals began their lives far earlier in the history of the universe. Older ellipticals are nicknamed “red and dead” by astronomers because these bloated galaxies are not anymore producing new, bluer stars, and are thus packed full of old and redder stellar populations.
Before infirmity sets in, some freshly formed elliptical galaxies experience a final flush of youth, as is the case with NGC 3597. Galaxies smashing together pool their available gas and dust, triggering new rounds of star birth. Some of this material ends up in dense pockets initially called proto-globular clusters, dozens of which festoon NGC 3597. These pockets will go on to collapse and form fully-fledged globular clusters, large spheres that orbit the centers of galaxies like satellites, packed tightly full of millions of stars.
Text credit: European Space Agency
Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

Commenting is disabled for this post.
Post has shared content
Cosmic rays from supernovae..
By +Giovanni Lo Cascio
#Astronomy #NASA #Hubble #ESA #SETI #ISS #Science #Science64
By +Giovanni Lo Cascio
#Astronomy #NASA #Hubble #ESA #SETI #ISS #Science #Science64
Cosmic rays from supernovae..
Ancient Supernovae Close Enough To Radiate Biology On Earth
We’ve often wondered about past extinctions and major climatic changes. Research provided “slam dunk” evidence of two prehistoric supernovae exploding about 300 light years from Earth.
Now, a follow-up investigation based on computer modelling shows those supernovae likely exposed biology on our planet to a long-lasting gust of cosmic radiation, which also affected the atmosphere.
“I was surprised to see as much effect as there was,” said Adrian Melott, professor of physics at the University of Kansas, who co-authored the new paper appearing The Astrophysical Journal Letters, a peer-reviewed express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research.
“I was expecting there to be very little effect at all,” he said. “The supernovae were pretty far way — more than 300 light years — that’s really not very close.”
According to Melott, initially the two stars that exploded 1.7 to 3.2 million and 6.5 to 8.7 million years ago each would have caused blue light in the night sky brilliant enough to disrupt animals’ sleep patterns for a few weeks.
But their major effect would have come from radiation, which the KU astrophysicist said would have packed doses equivalent to one CT scan per year for every creature inhabiting land or shallower parts of the ocean.
“The big thing turns out to be the cosmic rays,” Melott said. “The really high-energy ones are pretty rare. They get increased by quite a lot here — for a few hundred to thousands of years, by a factor of a few hundred. The high-energy cosmic rays are the ones that can penetrate the atmosphere. They tear up molecules, they can rip electrons off atoms, and that goes on right down to the ground level. Normally that happens only at high altitude.”
Melott’s collaborators on the research are Brian Thomas and Emily Engler of Washburn University, Michael Kachelrieß of the Institutt for fysikk in Norway, Andrew Overholt of MidAmerica Nazarene University and Dimitry Semikoz of the Observatoire de Paris and Moscow Engineering Physics Institute.
The boosted exposure to cosmic rays from supernovae could have had “substantial effects on the terrestrial atmosphere and biota,” the authors write. For instance, the research suggested the supernovae might have caused a 20-fold increase in irradiation by muons at ground level on Earth.
“A muon is a cousin of the electron, a couple of hundred times heavier than the electron — they penetrate hundreds of meters of rock,” Melott said. “Normally there are lots of them hitting us on the ground. They mostly just go through us, but because of their large numbers contribute about 1/6 of our normal radiation dose. So if there were 20 times as many, you’re in the ballpark of tripling the radiation dose.”
Melott said the uptick in radiation from muons would have been high enough to boost the mutation rate and frequency of cancer, “but not enormously. Still, if you increased the mutation rate you might speed up evolution.”
Indeed, a minor mass extinction around 2.59 million years ago may be connected in part to boosted cosmic rays that could have helped to cool Earth’s climate. The new research results show that the cosmic rays ionize the Earth’s atmosphere in the troposphere — the lowest level of the atmosphere — to a level eight times higher than normal. This would have caused an increase in cloud-to-ground lightning.
“There was climate change around this time,” Melott said. “Africa dried out, and a lot of the forest turned into savannah. Around this time and afterwards, we started having glaciations — ice ages — over and over again, and it’s not clear why that started to happen. It’s controversial, but maybe cosmic rays had something to do with it.”
Source: The University of Kansas
Image : A violent and chaotic-looking mass of gas and dust is seen in this Hubble Space Telescope image of a nearby supernova remnant. Denoted N 63A, the object is the remains of a massive star that exploded, spewing its gaseous layers out into an already turbulent region.
Credit: NASA/ESA/HEIC and The Hubble Heritage Team (STScI/AURA)>

Commenting is disabled for this post.
Post has shared content
From Newborn Universe..
By +Giovanni Lo Cascio
#Astronomy #NASA #Hubble #ESA #SETI #ISS #Science #Science64
By +Giovanni Lo Cascio
#Astronomy #NASA #Hubble #ESA #SETI #ISS #Science #Science64
HST.. From Newborn Universe..
Two of NASA's Great Observatories, the Spitzer and Hubble Space Telescopes, have teamed up to "weigh" the stars in several distant galaxies. One of these galaxies, among the most distant ever seen, appears to be unusually massive and mature for its place in the young universe.
This came as a surprise to astronomers. The earliest galaxies in the universe are commonly thought to have been much smaller associations of stars that gradually merged to build large galaxies like our Milky Way.
"This galaxy, named HUDF-JD2, appears to have 'bulked up' amazingly quickly, within the first few hundred million years after the big bang. It made about eight times more mass in stars than are found in our own Milky Way today, and then, just as suddenly, it stopped forming new stars," said Dr. Bahram Mobasher of the Space Telescope Science Institute, Baltimore, and the European Space Agency, Paris.
The galaxy was pinpointed among approximately 10,000 others in a small patch of sky called the Hubble Ultra Deep Field. The galaxy is believed to be about as far away as the most distant known galaxies. It represents an era when the universe was only 800 million years old. That is about five percent of the universe's age of 14 billion years.
Scientists studying the Ultra Deep Field found this galaxy in Hubble's infrared images. They expected it to be young and small, like other known galaxies at similar distances. Instead, they found evidence the galaxy is remarkably mature and much more massive. Its stars appear to have been in place for a long time.
Hubble's optical-light Ultra Deep Field image is the deepest image ever taken, yet this galaxy was not evident. This indicates much of the galaxy's optical light has been absorbed by traveling billions of light-years through intervening hydrogen gas. The galaxy was detected using Hubble's near-infrared camera and multi-object spectrometer. It was also detected by an infrared camera on the Very Large Telescope at the European Southern Observatory. At those longer infrared wavelengths, it is very faint and red.
The big surprise is how much brighter the galaxy is in longer-wavelength infrared images from the Spitzer Space Telescope. Spitzer is sensitive to the light from older, redder stars, which should make up most of the mass in a galaxy. The infrared brightness of the galaxy suggests it is massive. "This would be quite a big galaxy even today," said Dr. Mark Dickinson of the National Optical Astronomy Observatory, Tucson, Ariz. "At a time when the universe was only 800 million years old, it's positively gigantic."
Spitzer observations were also independently reported by Dr. Laurence Eyles from the University of Exeter in the United Kingdom and Dr. Haojing Yan of the Spitzer Science Center, Pasadena, Calif. They also revealed evidence for mature stars in more ordinary, less massive galaxies at similar distances, when the universe was less than one billion years old.
The new observations reported by Mobasher extend this notion of surprisingly mature "baby galaxies" to an object which is perhaps 10 times more massive, and which seemed to form its stars even earlier in the history of the universe.
Mobasher's team estimated the distance to this galaxy by combining information provided by the Hubble, Spitzer, and Very Large Telescope observations. The relative brightness of the galaxy at different wavelengths is influenced by the expanding universe and allows astronomers to estimate its distance. They can also get an idea of the make-up of the galaxy in terms of the mass and age of its stars.
While astronomers generally believe most galaxies were built piecewise by mergers of smaller galaxies, the discovery of this object suggests at least a few galaxies formed quickly long ago. For such a large galaxy, this would have been a tremendously explosive event of star birth.
JPL manages the Spitzer Space Telescope mission for NASA. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena.The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. The Very Large Telescope is a project of the European Southern Observatory at the Paranal Observatory in Atacama, Chile.
Credit : NASA / JPL Caltech
Two of NASA's Great Observatories, the Spitzer and Hubble Space Telescopes, have teamed up to "weigh" the stars in several distant galaxies. One of these galaxies, among the most distant ever seen, appears to be unusually massive and mature for its place in the young universe.
This came as a surprise to astronomers. The earliest galaxies in the universe are commonly thought to have been much smaller associations of stars that gradually merged to build large galaxies like our Milky Way.
"This galaxy, named HUDF-JD2, appears to have 'bulked up' amazingly quickly, within the first few hundred million years after the big bang. It made about eight times more mass in stars than are found in our own Milky Way today, and then, just as suddenly, it stopped forming new stars," said Dr. Bahram Mobasher of the Space Telescope Science Institute, Baltimore, and the European Space Agency, Paris.
The galaxy was pinpointed among approximately 10,000 others in a small patch of sky called the Hubble Ultra Deep Field. The galaxy is believed to be about as far away as the most distant known galaxies. It represents an era when the universe was only 800 million years old. That is about five percent of the universe's age of 14 billion years.
Scientists studying the Ultra Deep Field found this galaxy in Hubble's infrared images. They expected it to be young and small, like other known galaxies at similar distances. Instead, they found evidence the galaxy is remarkably mature and much more massive. Its stars appear to have been in place for a long time.
Hubble's optical-light Ultra Deep Field image is the deepest image ever taken, yet this galaxy was not evident. This indicates much of the galaxy's optical light has been absorbed by traveling billions of light-years through intervening hydrogen gas. The galaxy was detected using Hubble's near-infrared camera and multi-object spectrometer. It was also detected by an infrared camera on the Very Large Telescope at the European Southern Observatory. At those longer infrared wavelengths, it is very faint and red.
The big surprise is how much brighter the galaxy is in longer-wavelength infrared images from the Spitzer Space Telescope. Spitzer is sensitive to the light from older, redder stars, which should make up most of the mass in a galaxy. The infrared brightness of the galaxy suggests it is massive. "This would be quite a big galaxy even today," said Dr. Mark Dickinson of the National Optical Astronomy Observatory, Tucson, Ariz. "At a time when the universe was only 800 million years old, it's positively gigantic."
Spitzer observations were also independently reported by Dr. Laurence Eyles from the University of Exeter in the United Kingdom and Dr. Haojing Yan of the Spitzer Science Center, Pasadena, Calif. They also revealed evidence for mature stars in more ordinary, less massive galaxies at similar distances, when the universe was less than one billion years old.
The new observations reported by Mobasher extend this notion of surprisingly mature "baby galaxies" to an object which is perhaps 10 times more massive, and which seemed to form its stars even earlier in the history of the universe.
Mobasher's team estimated the distance to this galaxy by combining information provided by the Hubble, Spitzer, and Very Large Telescope observations. The relative brightness of the galaxy at different wavelengths is influenced by the expanding universe and allows astronomers to estimate its distance. They can also get an idea of the make-up of the galaxy in terms of the mass and age of its stars.
While astronomers generally believe most galaxies were built piecewise by mergers of smaller galaxies, the discovery of this object suggests at least a few galaxies formed quickly long ago. For such a large galaxy, this would have been a tremendously explosive event of star birth.
JPL manages the Spitzer Space Telescope mission for NASA. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena.The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. The Very Large Telescope is a project of the European Southern Observatory at the Paranal Observatory in Atacama, Chile.
Credit : NASA / JPL Caltech

Commenting is disabled for this post.
Post has attachment
Scenes from Outer Space.... RCW 38
#ram1 #robmosley #ram1Nov2017 #rcw38 #Space #outerspace #scenesfromouterspace #galaxy #solarsystem #science #technology #chandra #caltech #cxc #esa #Nasa #jpl #RobertMosley #mosley
X-ray: NASA/CXC/ESA-ESTEC/E.Winston et al, Near-IR: 2MASS/UMass/IPAC-Caltech/NASA/NSF, Infrared: NASA/JPL-Caltech
#ram1 #robmosley #ram1Nov2017 #rcw38 #Space #outerspace #scenesfromouterspace #galaxy #solarsystem #science #technology #chandra #caltech #cxc #esa #Nasa #jpl #RobertMosley #mosley
X-ray: NASA/CXC/ESA-ESTEC/E.Winston et al, Near-IR: 2MASS/UMass/IPAC-Caltech/NASA/NSF, Infrared: NASA/JPL-Caltech

Add a comment...
Post has shared content
Public
Rapidly Varying Temperatures Observed, for First Time, on the Ultrafast Streams of Gas Emanating from Around a Black Hole
ESA and NASA space telescopes have made the most detailed observation of an ultra-fast wind flowing from the vicinity of a black hole at nearly a quarter of the speed of light.
Outflowing gas is a common feature of the supermassive black holes that reside in the centre of large galaxies. Millions to billions of times more massive than the Sun, these black holes feed off the surrounding gas that swirls around them. Space telescopes see this as bright emissions, including X-rays, from the innermost part of the disc around the black hole.
Occasionally, the black holes eat too much and burp out an ultra-fast wind. These winds are an important characteristic to study because they could have a strong influence on regulating the growth of the host galaxy by clearing the surrounding gas away and therefore suppressing the birth of stars.
Using ESA’s XMM-Newton and NASA’s NuStar telescopes, scientists have now made the most detailed observation yet of such an outflow, coming from an active galaxy identified as IRAS 13224–3809. The winds recorded from the black hole reach 71 000 km/s – 0.24 times the speed of light – putting it in the top 5% of fastest known black hole winds.
XMM-Newton focused on the black hole for 17 days straight, revealing the extremely variable nature of the winds.
“We often only have one observation of a particular object, then several months or even years later we observe it again and see if there’s been a change,” says Michael Parker of the Institute of Astronomy at Cambridge, UK, lead author of the paper published in Nature this week that describes the new result.
“Thanks to this long observation campaign, we observed changes in the winds on a timescale of less than an hour for the first time.”
The changes were seen in the increasing temperature of the winds, a signature of their response to greater X-ray emission from the disc right next to the black hole.
Furthermore, the observations also revealed changes to the chemical fingerprints of the outflowing gas: as the X-ray emission increased, it stripped electrons in the wind from their atoms, erasing the wind signatures seen in the data.
“The chemical fingerprints of the wind changed with the strength of the X-rays in less than an hour, hundreds of times faster than ever seen before,” says co-author Andrew Fabian, also from the Institute of Astronomy and principal investigator of the project.
“It allows us to link the X-ray emission arising from the infalling material into the black hole, to the variability of the outflowing wind farther away.”
“Finding such variability, and finding evidence for this link, is a key step in understanding how black hole winds are launched and accelerated, which in turn is an essential part of understanding their ability to moderate star formation in the host galaxy,” adds Norbert Schartel, ESA’s XMM-Newton project scientist.
► Source>> http://bit.ly/2lIMn83
► The paper "The response of relativistic outflowing gas to the inner accretion disk of a black hole.", published in the journal Nature>> http://www.nature.com/nature/journal/v543/n7643/full/nature21385.html
► Read the preprint on arXiv>> https://arxiv.org/abs/1703.00071
► Image: Artist impression illustrating a supermassive black hole with X-ray emission emanating from its inner region (pink) and ultrafast winds streaming from the surrounding disk (purple).
Credit: European Space Agency
Further reading
► Temperature Swings of Black Hole Winds Measured for First Time>> http://bit.ly/2mLD2fJ
#Astrophysics, #BlackHoles, #NASA, #ESA, #Research, #Caltech
ESA and NASA space telescopes have made the most detailed observation of an ultra-fast wind flowing from the vicinity of a black hole at nearly a quarter of the speed of light.
Outflowing gas is a common feature of the supermassive black holes that reside in the centre of large galaxies. Millions to billions of times more massive than the Sun, these black holes feed off the surrounding gas that swirls around them. Space telescopes see this as bright emissions, including X-rays, from the innermost part of the disc around the black hole.
Occasionally, the black holes eat too much and burp out an ultra-fast wind. These winds are an important characteristic to study because they could have a strong influence on regulating the growth of the host galaxy by clearing the surrounding gas away and therefore suppressing the birth of stars.
Using ESA’s XMM-Newton and NASA’s NuStar telescopes, scientists have now made the most detailed observation yet of such an outflow, coming from an active galaxy identified as IRAS 13224–3809. The winds recorded from the black hole reach 71 000 km/s – 0.24 times the speed of light – putting it in the top 5% of fastest known black hole winds.
XMM-Newton focused on the black hole for 17 days straight, revealing the extremely variable nature of the winds.
“We often only have one observation of a particular object, then several months or even years later we observe it again and see if there’s been a change,” says Michael Parker of the Institute of Astronomy at Cambridge, UK, lead author of the paper published in Nature this week that describes the new result.
“Thanks to this long observation campaign, we observed changes in the winds on a timescale of less than an hour for the first time.”
The changes were seen in the increasing temperature of the winds, a signature of their response to greater X-ray emission from the disc right next to the black hole.
Furthermore, the observations also revealed changes to the chemical fingerprints of the outflowing gas: as the X-ray emission increased, it stripped electrons in the wind from their atoms, erasing the wind signatures seen in the data.
“The chemical fingerprints of the wind changed with the strength of the X-rays in less than an hour, hundreds of times faster than ever seen before,” says co-author Andrew Fabian, also from the Institute of Astronomy and principal investigator of the project.
“It allows us to link the X-ray emission arising from the infalling material into the black hole, to the variability of the outflowing wind farther away.”
“Finding such variability, and finding evidence for this link, is a key step in understanding how black hole winds are launched and accelerated, which in turn is an essential part of understanding their ability to moderate star formation in the host galaxy,” adds Norbert Schartel, ESA’s XMM-Newton project scientist.
► Source>> http://bit.ly/2lIMn83
► The paper "The response of relativistic outflowing gas to the inner accretion disk of a black hole.", published in the journal Nature>> http://www.nature.com/nature/journal/v543/n7643/full/nature21385.html
► Read the preprint on arXiv>> https://arxiv.org/abs/1703.00071
► Image: Artist impression illustrating a supermassive black hole with X-ray emission emanating from its inner region (pink) and ultrafast winds streaming from the surrounding disk (purple).
Credit: European Space Agency
Further reading
► Temperature Swings of Black Hole Winds Measured for First Time>> http://bit.ly/2mLD2fJ
#Astrophysics, #BlackHoles, #NASA, #ESA, #Research, #Caltech

Add a comment...
Wait while more posts are being loaded