While I was reading Ta-Pei Cheng's book on relativity, I was unable to derive the correct relationship between coordinate time $dt$ (the book defined it as the time measured by a clock located at $r=\infty$ from the source of gravity) and proper time $d\tau$ from the definition of metric.
The book states that for a weak and static gravitational field, $g_{00}(r)=-\left(1+\frac{2\Phi(r)}{c^2}\right)$ (with the metric signature $(-1,1,1,1)$ and $\Phi(r)$ is the gravitational potential) and the proper time $d\tau=\sqrt{-g_{00}}\,dt$.
From the gravitational redshift result I know that the above result is correct (in a more unambiguous form $d\tau=\sqrt{-g_{00}(r_\tau)}\,dt$).
However, if I simply use the formula for spacetime interval $ds^2=g_{\mu\nu}dx^\mu dx^\nu$ (assuming two clocks that measure proper time and coordinate time are at rest relative to each other), I have
$$ ds^2=g_{00}(r_\tau)c^2d\tau^2=g_{00}(r_t)c^2dt^2=-c^2dt^2\\ \implies \sqrt{-g_{00}(r_\tau)}\,d\tau=dt$$ This suggests that time flows faster with a lower gravitational potential which is incorrect.
I'm not sure why the above method lead to a wrong conclusion, did I misunderstood the the definition of proper time, coordinate time or spacetime interval?