Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. Join them; it only takes a minute:

Sign up
Here's how it works:
  1. Anybody can ask a question
  2. Anybody can answer
  3. The best answers are voted up and rise to the top

solve $$ \int_{-\infty}^{\infty} \frac{e^{2x}}{ae^{3x}+b} dx,$$ where $a,b \gt 0$

I tried using $y=e^x$ but still can't solve.

I get $\displaystyle\int_0^\infty \frac y{ay^3+b} \, dy.$

Is there any different method to solve?

share|cite|improve this question
    
Shouldn't it be $y^2$ in the denominator? If it is, then you'll be able to use substitution. – KingDuken 7 hours ago
    
@KingDuken You mean $y^2$ in the numerator ? In fact it is $y$ because the differential element $dx=dy/y$ brings a division by $y$. – JeanMarie 7 hours ago
    
Notice that $ay^3 + b$ can be factored to have a linear term $(y + (b/a)^{1/3})$ and a quadratic term. Now do partial fractions. – T. Bongers 7 hours ago
1  
@JeanMarie : It should be just as the poster wrote it. $$ \int \frac{e^{2x}}{a e^{3x} + b}\,dx = \int \frac{e^x}{ a\left( e^x \right)^3 + b} \, \Big(e^x \, dx \Big) = \int \frac y {ay^3+b} \, dy\qquad\text{since } e^x\,dx = dy. $$ – Michael Hardy 6 hours ago

It suffices to compute:

$$\int \frac{y}{y^3 - r^3}dy$$

(putting $r = - \sqrt[3]{\frac{b}{a} }$). Let's assume that $a, b > 0$.

After decomposing into partial fractions, i.e.:

$$\frac{y}{y^3 - r^3} = \frac1{3r} \left( \frac1{y - r} - \frac{y - r}{y^2 + ry + r^2} \right)$$

we find:

$$\int\frac{y}{y^3 -r^3} dy = \frac1{3r}\left[ \log\left( \frac{y-r}{\sqrt{y^2 + ry + r^2}} \right) + \sqrt 3 \arctan \left( \frac{2y + r}{r \sqrt 3} \right) \right]$$

Hence,

$$\int_0^{\infty} \frac{y}{y^3- r^3} dy = \frac{1}{r\sqrt 3} \left( \arctan (-\infty) - \arctan\left( \frac1{\sqrt 3} \right) \right)= -\frac{2\pi}{3r\sqrt 3}$$

and so,

$$\int_{-\infty}^{\infty} \frac{e^{3x}}{ae^{2x} + b} dx = \frac{2\pi}{3\sqrt 3 \sqrt[3]{a^2 b}}$$

share|cite|improve this answer
    
sign needs to be changed, then it matches what I got except for a factor of $2$. – robjohn 6 hours ago
    
@robjohn the sign problem was with the evaluation of the $\arctan$ integral. I fixed it. I can't see why there should be a factor of $2$ – Ahmed Hussein 6 hours ago
    
Somewhere, there is a missing factor of $2$. For $a=b=1$, Mathematica gives $\frac{2\pi}{3\sqrt3}$. – robjohn 6 hours ago
    
@robjohn you are right. The problem is still with the evaluation of the said integral. Now it should become correct. – Ahmed Hussein 6 hours ago
    
Indeed. It now matches what I got. – robjohn 6 hours ago

$$ \begin{align} \int_{-\infty}^\infty\frac{e^{2x}}{ae^{3x}+b}\,\mathrm{d}x &=\frac1{3b}\left(\frac ba\right)^{2/3}\int_0^\infty\frac{u^{-1/3}}{u+1}\,\mathrm{d}u\tag{1}\\ &=\frac13\left(\frac1{ba^2}\right)^{1/3}\pi\csc\left(\frac23\pi\right)\tag{2}\\ &=\frac{2\pi}{3\sqrt3}\left(\frac1{ba^2}\right)^{1/3}\tag{3} \end{align} $$ Explanation:
$(1)$: $u=\frac abe^{3x}$
$(2)$: result from this answer
$(3)$: $\csc\left(\frac23\pi\right)=\frac2{\sqrt3}$

share|cite|improve this answer

Dividing both numerator and denominator by $e^{3x}$, we get $$\frac{e^{2x}}{ae^{3x}+b} dx=\frac{e^{-x}}{a+be^{-3x}} dx$$ If you use $y=e^{-x}$, then you get $$-\frac{dy}{a+by^3}=-\frac{1}{b}\cdot\frac{dy}{y^3+r^3}$$ where $r=\sqrt[3]{\frac{b}{a}}$

Now if you substitute $y=r\tan^\frac{2}{3} \theta$ and $dy=\frac{2}{3}r\tan^{-\frac{1}{3}} \theta \sec^2 \theta \, d\theta$, your integrand will become $$-\frac{1}{b}\cdot\frac{\frac{2}{3}r\tan^{-\frac{1}{3}} \theta \sec^2 \theta \, d\theta}{r^3\sec^2 \theta}=-\frac{2}{3br^2}\cdot\tan^{-\frac{1}{3}} \theta \, d\theta$$

If you change the limits properly, then I think you will be able to complete the integration. Hope this helps.

share|cite|improve this answer
1  
He hasn't written it wrong. – Zain Patel 7 hours ago

WLOG, $a=b=1$. Then factoring the denominator, we decompose in simple fractions

$$\frac y{y^3+1}=A\frac1{y+1}+B\frac{2y-1}{y^2-y+1}+C\frac1{y^2-y+1}=\frac{(A+2B)y^2+(-A+B+C)y+(A-B+C)}{y^3+1}.$$

Identifying,

$$\frac y{y^3+1}=\frac13\frac1{y+1}-\frac16\frac{2y-1}{y^2-y+1}+\frac12\frac1{y^2-y+1}.$$

The first two terms have an obvious antiderivative. The third one also becomes easy by completing the square

$$\frac1{y^2-y+1}=\frac1{\left(y-\frac12\right)^2+\frac34}=\frac43\frac1{\left(\sqrt{\frac43}(y-\frac12)\right)^2+1}$$ which yields an arctangent.

share|cite|improve this answer

$$ ay^3 + b = a\left( y^3 + \frac b a \right) $$ $$ y^3 + \frac b a = y^3 +c^3 = (y+c)(y^2 - yc + c^2) \quad\text{where } c = \sqrt[3]\frac b a. $$ So use partial fractions to get $$ \frac \bullet {y+c} + \frac {((\bullet\, y) + \bullet)} {y^2 - yc + c^2}. $$ To integrate the second term, you have $$ \frac {ey+f}{y^2 - yc + c^2}, $$ and letting $u=y^2-yc+c^2$ so $du = (2y-c)\,dy$. Multiplying both sides of the last equality by $e/2$, we get $$ \frac e 2 \, du = \left( ey+\frac{ce}{2} \right) \, dy. $$ So $$ (ey+f)\,dy = \left( \underbrace{\left( ey + \frac{ce}2 \right)\,dy} + \left( f - \frac{ce}2 \right) \, dy \right). $$ The substitution handles the part over the $\underbrace{\text{underbrace}}.$ Then you have $$ \int \frac{dy}{y^2-yc+c^2}. $$ Complete the square $$ y^2 - yc + c^2 = \left( y^2 - yc + \frac{c^2} 4 \right) + \frac{3c^2} 4 = \left( y - \frac c 2 \right)^2 + \frac{3c^2} 4. $$ So when you integrate, you get an arctangent.

share|cite|improve this answer

Your Answer

 
discard

By posting your answer, you agree to the privacy policy and terms of service.

Not the answer you're looking for? Browse other questions tagged or ask your own question.