Distributed Stochastic Singular Value Decomposition¶
Intro¶
Mahout has a distributed implementation of Stochastic Singular Value Decomposition [1] using the parallelization strategy comprehensively defined in Nathan Halko's dissertation "Randomized methods for computing low-rank approximations of matrices" [2].
Modified SSVD Algorithm¶
Given an \(m\times n\)
matrix \(\mathbf{A}\), a target rank \(k\in\mathbb{N}_{1}\)
, an oversampling parameter \(p\in\mathbb{N}_{1}\),
and the number of additional power iterations \(q\in\mathbb{N}_{0}\),
this procedure computes an \(m\times\left(k+p\right)\)
SVD \(\mathbf{A\approx U}\boldsymbol{\Sigma}\mathbf{V}^{\top}\):
-
Create seed for random
\(n\times\left(k+p\right)\)matrix\(\boldsymbol{\Omega}\). The seed defines matrix\(\mathbf{\Omega}\)using Gaussian unit vectors per one of suggestions in [Halko, Martinsson, Tropp]. -
\(\mathbf{Y=A\boldsymbol{\Omega}},\,\mathbf{Y}\in\mathbb{R}^{m\times\left(k+p\right)}\) -
Column-orthonormalize
\(\mathbf{Y}\rightarrow\mathbf{Q}\)by computing thin decomposition\(\mathbf{Y}=\mathbf{Q}\mathbf{R}\). Also,\(\mathbf{Q}\in\mathbb{R}^{m\times\left(k+p\right)},\,\mathbf{R}\in\mathbb{R}^{\left(k+p\right)\times\left(k+p\right)}\); denoted as\(\mathbf{Q}=\mbox{qr}\left(\mathbf{Y}\right).\mathbf{Q}\) -
\(\mathbf{B}_{0}=\mathbf{Q}^{\top}\mathbf{A}:\,\,\mathbf{B}\in\mathbb{R}^{\left(k+p\right)\times n}\). -
If
\(q>0\)repeat: for\(i=1..q\):\(\mathbf{B}_{i}^{\top}=\mathbf{A}^{\top}\mbox{qr}\left(\mathbf{A}\mathbf{B}_{i-1}^{\top}\right).\mathbf{Q}\)(power iterations step). -
Compute Eigensolution of a small Hermitian
\(\mathbf{B}_{q}\mathbf{B}_{q}^{\top}=\mathbf{\hat{U}}\boldsymbol{\Lambda}\mathbf{\hat{U}}^{\top}\),\(\mathbf{B}_{q}\mathbf{B}_{q}^{\top}\in\mathbb{R}^{\left(k+p\right)\times\left(k+p\right)}\). -
Singular values
\(\mathbf{\boldsymbol{\Sigma}}=\boldsymbol{\Lambda}^{0.5}\), or, in other words,\(s_{i}=\sqrt{\sigma_{i}}\). -
If needed, compute
\(\mathbf{U}=\mathbf{Q}\hat{\mathbf{U}}\). -
If needed, compute
\(\mathbf{V}=\mathbf{B}_{q}^{\top}\hat{\mathbf{U}}\boldsymbol{\Sigma}^{-1}\). Another way is\(\mathbf{V}=\mathbf{A}^{\top}\mathbf{U}\boldsymbol{\Sigma}^{-1}\).
Implementation¶
Mahout dssvd(...) is implemented in the mahout math-scala algebraic optimizer which translates Mahout's R-like linear algebra operators into a physical plan for both Spark and H2O distributed engines.
def dssvd[K: ClassTag](drmA: DrmLike[K], k: Int, p: Int = 15, q: Int = 0): (DrmLike[K], DrmLike[Int], Vector) = { val drmAcp = drmA.checkpoint() val m = drmAcp.nrow val n = drmAcp.ncol assert(k <= (m min n), "k cannot be greater than smaller of m, n.") val pfxed = safeToNonNegInt((m min n) - k min p) // Actual decomposition rank val r = k + pfxed // We represent Omega by its seed. val omegaSeed = RandomUtils.getRandom().nextInt() // Compute Y = A*Omega. var drmY = drmAcp.mapBlock(ncol = r) { case (keys, blockA) => val blockY = blockA %*% Matrices.symmetricUniformView(n, r, omegaSeed) keys -> blockY } var drmQ = dqrThin(drmY.checkpoint())._1 // Checkpoint Q if last iteration if (q == 0) drmQ = drmQ.checkpoint() var drmBt = drmAcp.t %*% drmQ // Checkpoint B' if last iteration if (q == 0) drmBt = drmBt.checkpoint() for (i <- 0 until q) { drmY = drmAcp %*% drmBt drmQ = dqrThin(drmY.checkpoint())._1 // Checkpoint Q if last iteration if (i == q - 1) drmQ = drmQ.checkpoint() drmBt = drmAcp.t %*% drmQ // Checkpoint B' if last iteration if (i == q - 1) drmBt = drmBt.checkpoint() } val (inCoreUHat, d) = eigen(drmBt.t %*% drmBt) val s = d.sqrt // Since neither drmU nor drmV are actually computed until actually used // we don't need the flags instructing compute (or not compute) either of the U,V outputs val drmU = drmQ %*% inCoreUHat val drmV = drmBt %*% (inCoreUHat %*%: diagv(1 /: s)) (drmU(::, 0 until k), drmV(::, 0 until k), s(0 until k)) }
Note: As a side effect of checkpointing, U and V values are returned as logical operators (i.e. they are neither checkpointed nor computed). Therefore there is no physical work actually done to compute \(\mathbf{U}\) or \(\mathbf{V}\) until they are used in a subsequent expression.
Usage¶
The scala dssvd(...) method can easily be called in any Spark or H2O application built with the math-scala library and the corresponding Spark or H2O engine module as follows:
import org.apache.mahout.math._ import decompositions._ import drm._ val(drmU, drmV, s) = dssvd(drma, k = 40, q = 1)
References¶
[1]: Mahout Scala and Mahout Spark Bindings for Linear Algebra Subroutines
[2]: Randomized methods for computing low-rank approximations of matrices
