Brandon Rohrer

@_brohrer_

Teaching. Writing. Machine learning. Data science. Algorithms. Robotics. Facebook. Microsoft. MIT PhD.

Boston
ಆಗಸ್ಟ್ 2012 ಸಮಯದಲ್ಲಿ ಸೇರಿದ್ದಾರೆ

ಟ್ವೀಟ್‌ಗಳು

ನೀವು @_brohrer_ ಅವರನ್ನು ತಡೆಹಿಡಿದಿರುವಿರಿ

ಈ ಟ್ವೀಟ್‌ಗಳನ್ನು ವೀಕ್ಷಿಸಲು ನೀವು ಖಚಿತವಾಗಿ ಬಯಸುವಿರಾ? ಟ್ವೀಟ್ ವೀಕ್ಷಣೆಯು @_brohrer_ ಅವರ ತಡೆತೆರವುಗೊಳಿಸುವುದಿಲ್ಲ

  1. ಪಿನ್ ಮಾಡಿದ ಟ್ವೀಟ್
    ಮಾರ್ಚ್ 2,2017

    How Work (including backpropagation!) is the latest addition to my video tutorial library. Enjoy.

    ರದ್ದುಗೊಳಿಸು
  2. ಡಿಸೆಂ 19

    More from the gallery

    ಈ ಥ್ರೆಡ್ ತೋರಿಸಿ
    ರದ್ದುಗೊಳಿಸು
  3. ಡಿಸೆಂ 19

    I’ve learned lots of cool things putting this together! Among the coolest: linear regression and logistic regression are just small, special types of neural networks.

    ಈ ಥ್ರೆಡ್ ತೋರಿಸಿ
    ರದ್ದುಗೊಳಿಸು
  4. ಡಿಸೆಂ 19

    I'm working on a blog/video about What Neural Networks Learn. Here's a sneak peak.

    ಈ ಥ್ರೆಡ್ ತೋರಿಸಿ
    ರದ್ದುಗೊಳಿಸು
  5. ಡಿಸೆಂ 18

    This is a beautiful example of a curiosity-driven project. It also shows the versatility of logistic regression.

    ರದ್ದುಗೊಳಿಸು
  6. ಡಿಸೆಂ 17

    The migrating boundary between human and animal cognition reminds me of the migrating boundary between biological and machine cognition.

    ರದ್ದುಗೊಳಿಸು
  7. ಡಿಸೆಂ 15

    This is what exploring new directions in ML looks like. Acknowledging limitations of current methods. Referring back to biology. Mostly negative results. This is growth.

    ರದ್ದುಗೊಳಿಸು
  8. ಡಿಸೆಂ 15

    Also from Hinton: “Now if you send in a paper that has a radically new idea, there's no chance in hell it will get accepted .... Anything that makes the brain hurt is not going to get accepted.”

    ರದ್ದುಗೊಳಿಸು
  9. ಡಿಸೆಂ 14
    ರದ್ದುಗೊಳಿಸು
  10. ಡಿಸೆಂ 14

    This ambiguity has been a source of confusion for me: "sigmoid" literally means "s-shaped". It includes both logistic and hyperbolic tangent functions, but sometimes it's used specifically to mean the logistic function.

    ರದ್ದುಗೊಳಿಸು
  11. ಡಿಸೆಂ 13

    My new polynomial regression course on is project-based. It walks students through a realistic ML use case from start to finish. Educators, you are welcome to evaluate it (and all my other courses) at no cost. Just message me for the coupon codes.

    ರದ್ದುಗೊಳಿಸು
  12. ಡಿಸೆಂ 12

    Don’t let the catchy title fool you. This post is substantial and insightful. ML is easier and more enjoyable to learn when it’s tied to projects.

    ರದ್ದುಗೊಳಿಸು
  13. ಡಿಸೆಂ 12

    Straight talk from a pillar of the deep learning community.

    ರದ್ದುಗೊಳಿಸು
  14. ಡಿಸೆಂ 11

    I finally released my polynomial regression course into the world. It's the third in my End to End Machine Learning series. I'm relieved and nervous and proud. I hope you enjoy it.

    ರದ್ದುಗೊಳಿಸು
  15. ಡಿಸೆಂ 10

    It was a tenet of my (Prof Neville Hogan’s) grad robotics lab that it was easier to design robots around the limitations of control algorithms than to alter physics through aggressive control.

    ರದ್ದುಗೊಳಿಸು
  16. ಡಿಸೆಂ 10

    Spoiler: Bayesian analysis reveals an “Occam factor” favoring simpler models over memorization.

    ಈ ಥ್ರೆಡ್ ತೋರಿಸಿ
    ರದ್ದುಗೊಳಿಸು
  17. ಡಿಸೆಂ 10

    A longstanding mystery of neural networks is that they are so flexible that they can memorize pure noise, but instead they extract repeatable patterns. No one knew why. Until now.

    ಈ ಥ್ರೆಡ್ ತೋರಿಸಿ
    ರದ್ದುಗೊಳಿಸು
  18. ಅವರು ಮರುಟ್ವೀಟಿಸಿದ್ದಾರೆ
    ಡಿಸೆಂ 9

    This video by has good tips about using multiple resources to learn concepts that are new to you, but the thing that caught my attention is a good intuitive explanation of what is meant by the (not-helpfully-named) "kernel trick".

    ರದ್ದುಗೊಳಿಸು
  19. ಡಿಸೆಂ 8

    Albon wisdom. Seriously. Not sarcastically. Thread.

    ರದ್ದುಗೊಳಿಸು
  20. ಡಿಸೆಂ 8

    Watching this right now! It's a pleasure to hear from one of the founders of the R community.

    ರದ್ದುಗೊಳಿಸು
  21. ಡಿಸೆಂ 8

    I just solved television. Every twenty-two minute show could be shortened to five if two characters were honest with each other in the opening scene.

    ರದ್ದುಗೊಳಿಸು

ಲೋಡಿಂಗ್ ಸಮಯ ಸ್ವಲ್ಪ ತೆಗೆದುಕೊಳ್ಳುತ್ತಿರುವಂತೆನಿಸುತ್ತದೆ.

Twitter ಸಾಮರ್ಥ್ಯ ಮೀರಿರಬಹುದು ಅಥವಾ ಕ್ಷಣಿಕವಾದ ತೊಂದರೆಯನ್ನು ಅನುಭವಿಸುತ್ತಿರಬಹುದು. ಮತ್ತೆ ಪ್ರಯತ್ನಿಸಿ ಅಥವಾ ಹೆಚ್ಚಿನ ಮಾಹಿತಿಗೆ Twitter ಸ್ಥಿತಿಗೆ ಭೇಟಿ ನೀಡಿ.

    ಇದನ್ನೂ ಸಹ ನೀವು ಇಷ್ಟಪಡಬಹುದು

    ·