Mathematica Stack Exchange is a question and answer site for users of Mathematica. Join them; it only takes a minute:

Sign up
Here's how it works:
  1. Anybody can ask a question
  2. Anybody can answer
  3. The best answers are voted up and rise to the top

I am having trouble selecting certain region from the data. I have data such that,

enter image description here

where A and B are the transparent region.

I want to normalize data by setting these transparent regions to 1, so I want to first fit the linear function f[x] by using data from region A and B such that

enter image description here

If I can find the function, then it is easy to normalize the data,

Table[data2[[i]]/f[i],{i,1,Length[data2]}].

However, it is hard to select the date in arbitrary transparent region. Any one can give me any idea to find this region?

Thank you!

data2={0.672, 0.672, 0.672, 0.672, 0.664, 0.664, 0.664, 0.664, 0.664, \
0.664, 0.664, 0.664, 0.656, 0.656, 0.656, 0.656, 0.656, 0.656, 0.656, \
0.656, 0.656, 0.656, 0.656, 0.648, 0.656, 0.656, 0.648, 0.656, 0.656, \
0.656, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, \
0.64, 0.64, 0.64, 0.648, 0.64, 0.64, 0.64, 0.648, 0.64, 0.64, 0.64, \
0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, \
0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.632, 0.632, 0.64, 0.632, \
0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, \
0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, \
0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.64, 0.648, \
0.64, 0.648, 0.64, 0.648, 0.64, 0.64, 0.64, 0.648, 0.648, 0.648, \
0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.656, 0.656, 0.656, \
0.648, 0.656, 0.648, 0.656, 0.656, 0.656, 0.656, 0.656, 0.656, 0.656, \
0.656, 0.656, 0.664, 0.656, 0.656, 0.656, 0.656, 0.656, 0.664, 0.656, \
0.664, 0.664, 0.656, 0.664, 0.664, 0.664, 0.664, 0.664, 0.664, 0.664, \
0.664, 0.664, 0.672, 0.672, 0.664, 0.664, 0.672, 0.664, 0.672, 0.672, \
0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, \
0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, \
0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, \
0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, \
0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.664, 0.664, 0.672, \
0.664, 0.664, 0.664, 0.664, 0.664, 0.664, 0.664, 0.664, 0.664, 0.664, \
0.656, 0.664, 0.656, 0.656, 0.656, 0.656, 0.656, 0.656, 0.656, 0.648, \
0.648, 0.648, 0.648, 0.648, 0.648, 0.64, 0.648, 0.64, 0.64, 0.64, \
0.64, 0.64, 0.64, 0.632, 0.632, 0.632, 0.632, 0.632, 0.632, 0.632, \
0.624, 0.624, 0.616, 0.616, 0.616, 0.616, 0.616, 0.616, 0.616, 0.616, \
0.608, 0.608, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.592, 0.592, 0.592, \
0.584, 0.584, 0.584, 0.584, 0.584, 0.576, 0.576, 0.576, 0.576, 0.568, \
0.568, 0.568, 0.568, 0.56, 0.56, 0.56, 0.552, 0.552, 0.552, 0.552, \
0.544, 0.544, 0.544, 0.544, 0.544, 0.544, 0.536, 0.536, 0.536, 0.528, \
0.528, 0.528, 0.528, 0.52, 0.52, 0.52, 0.52, 0.52, 0.52, 0.512, \
0.512, 0.512, 0.504, 0.504, 0.512, 0.504, 0.504, 0.504, 0.504, 0.504, \
0.504, 0.504, 0.504, 0.504, 0.496, 0.496, 0.496, 0.496, 0.488, 0.488, \
0.488, 0.488, 0.488, 0.488, 0.488, 0.488, 0.48, 0.488, 0.48, 0.48, \
0.48, 0.48, 0.488, 0.48, 0.488, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, \
0.48, 0.48, 0.48, 0.48, 0.488, 0.48, 0.48, 0.48, 0.48, 0.48, 0.48, \
0.488, 0.48, 0.48, 0.488, 0.488, 0.488, 0.488, 0.488, 0.488, 0.488, \
0.488, 0.488, 0.488, 0.488, 0.488, 0.488, 0.488, 0.488, 0.496, 0.496, \
0.496, 0.504, 0.504, 0.504, 0.504, 0.504, 0.504, 0.504, 0.504, 0.512, \
0.512, 0.512, 0.512, 0.512, 0.52, 0.512, 0.52, 0.52, 0.52, 0.528, \
0.528, 0.536, 0.536, 0.536, 0.536, 0.536, 0.536, 0.544, 0.544, 0.544, \
0.544, 0.544, 0.552, 0.552, 0.552, 0.56, 0.56, 0.56, 0.56, 0.568, \
0.568, 0.568, 0.576, 0.576, 0.576, 0.584, 0.584, 0.584, 0.584, 0.592, \
0.592, 0.592, 0.6, 0.6, 0.6, 0.608, 0.608, 0.608, 0.616, 0.616, \
0.616, 0.616, 0.616, 0.624, 0.624, 0.624, 0.632, 0.632, 0.632, 0.64, \
0.64, 0.64, 0.64, 0.648, 0.656, 0.656, 0.656, 0.656, 0.656, 0.664, \
0.664, 0.672, 0.672, 0.672, 0.672, 0.672, 0.68, 0.68, 0.68, 0.688, \
0.688, 0.688, 0.688, 0.696, 0.696, 0.696, 0.696, 0.704, 0.704, 0.704, \
0.704, 0.712, 0.712, 0.712, 0.712, 0.72, 0.72, 0.728, 0.728, 0.728, \
0.728, 0.728, 0.736, 0.736, 0.736, 0.736, 0.736, 0.744, 0.736, 0.744, \
0.744, 0.752, 0.744, 0.744, 0.752, 0.752, 0.752, 0.752, 0.752, 0.76, \
0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.768, 0.768, \
0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.776, 0.768, 0.768, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.784, 0.776, 0.776, \
0.776, 0.784, 0.784, 0.784, 0.784, 0.776, 0.784, 0.784, 0.784, 0.784, \
0.784, 0.784, 0.784, 0.784, 0.776, 0.784, 0.784, 0.784, 0.784, 0.784, \
0.784, 0.792, 0.792, 0.792, 0.784, 0.792, 0.784, 0.784, 0.784, 0.784, \
0.784, 0.784, 0.784, 0.792, 0.784, 0.792, 0.784, 0.784, 0.792, 0.784, \
0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.792, 0.784, 0.784, 0.784, \
0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, \
0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.776, 0.784, 0.784, 0.784, \
0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.776, 0.784, 0.776, \
0.784, 0.776, 0.776, 0.776, 0.784, 0.776, 0.784, 0.784, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.784, 0.776, 0.784, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.784, 0.776, 0.776, 0.776, 0.776, \
0.784, 0.776, 0.776, 0.776, 0.776, 0.776, 0.784, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.768, 0.776, \
0.776, 0.776, 0.768, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.784, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.768, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.784, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.784, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.768, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.768, 0.768, 0.776, 0.776, 0.768, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.768, 0.776, 0.776, 0.776, 0.776, 0.776, 0.768, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.768, \
0.768, 0.768, 0.776, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, \
0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, \
0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.76, 0.768, 0.768, 0.768, \
0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.76, 0.76, 0.76, 0.768, \
0.76, 0.768, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, \
0.76, 0.76, 0.76, 0.76, 0.752, 0.76, 0.76, 0.752, 0.752, 0.752, \
0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, \
0.752, 0.752, 0.744, 0.744, 0.744, 0.744, 0.744, 0.744, 0.744, 0.744, \
0.736, 0.736, 0.736, 0.736, 0.736, 0.736, 0.736, 0.736, 0.736, 0.736, \
0.736, 0.736, 0.736, 0.736, 0.728, 0.728, 0.728, 0.728, 0.72, 0.728, \
0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.712, 0.72, 0.712, \
0.712, 0.712, 0.712, 0.712, 0.712, 0.712, 0.704, 0.712, 0.704, 0.712, \
0.704, 0.704, 0.696, 0.704, 0.704, 0.696, 0.696, 0.704, 0.696, 0.696, \
0.696, 0.696, 0.696, 0.696, 0.696, 0.688, 0.696, 0.688, 0.688, 0.696, \
0.688, 0.688, 0.688, 0.688, 0.688, 0.688, 0.688, 0.68, 0.68, 0.68, \
0.68, 0.68, 0.68, 0.68, 0.672, 0.672, 0.672, 0.68, 0.672, 0.672, \
0.672, 0.672, 0.672, 0.672, 0.672, 0.672, 0.664, 0.664, 0.664, 0.664, \
0.664, 0.664, 0.664, 0.656, 0.664, 0.664, 0.664, 0.656, 0.664, 0.656, \
0.656, 0.656, 0.656, 0.656, 0.656, 0.656, 0.648, 0.656, 0.656, 0.648, \
0.656, 0.648, 0.648, 0.648, 0.648, 0.648, 0.656, 0.656, 0.648, 0.648, \
0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.64, \
0.648, 0.648, 0.64, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, \
0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, \
0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.648, 0.656, \
0.656, 0.656, 0.656, 0.656, 0.656, 0.656, 0.656, 0.656, 0.656, 0.656, \
0.656, 0.656, 0.664, 0.656, 0.656, 0.656, 0.664, 0.664, 0.664, 0.664, \
0.664, 0.672, 0.664, 0.664, 0.672, 0.672, 0.672, 0.672, 0.672, 0.672, \
0.672, 0.68, 0.68, 0.68, 0.688, 0.68, 0.68, 0.688, 0.68, 0.688, \
0.688, 0.688, 0.688, 0.696, 0.696, 0.696, 0.696, 0.696, 0.696, 0.696, \
0.704, 0.704, 0.696, 0.704, 0.704, 0.704, 0.704, 0.704, 0.712, 0.712, \
0.712, 0.712, 0.712, 0.712, 0.72, 0.712, 0.72, 0.72, 0.728, 0.72, \
0.72, 0.728, 0.728, 0.728, 0.736, 0.736, 0.736, 0.736, 0.736, 0.736, \
0.736, 0.736, 0.736, 0.736, 0.744, 0.744, 0.744, 0.744, 0.752, 0.744, \
0.744, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.752, 0.76, \
0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, 0.76, \
0.768, 0.76, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, \
0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.768, 0.776, 0.768, \
0.768, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, 0.776, \
0.776, 0.776, 0.784, 0.776, 0.776, 0.776, 0.776, 0.784, 0.776, 0.784, \
0.784, 0.784, 0.784, 0.792, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, \
0.784, 0.784, 0.784, 0.784, 0.784, 0.792, 0.784, 0.784, 0.792, 0.792, \
0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.792, \
0.792, 0.784, 0.792, 0.784, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.784, 0.792, 0.792, 0.792, 0.784, 0.784, 0.784, 0.792, 0.784, 0.792, \
0.784, 0.792, 0.792, 0.792, 0.792, 0.784, 0.784, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.784, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.784, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.784, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.8, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.8, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.8, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.8, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.8, 0.792, 0.792, 0.8, \
0.792, 0.792, 0.8, 0.792, 0.792, 0.792, 0.792, 0.8, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.8, 0.792, 0.8, 0.792, \
0.792, 0.792, 0.8, 0.792, 0.792, 0.792, 0.792, 0.8, 0.8, 0.792, \
0.792, 0.792, 0.792, 0.8, 0.792, 0.792, 0.8, 0.792, 0.8, 0.792, 0.8, \
0.792, 0.792, 0.792, 0.8, 0.792, 0.792, 0.8, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.792, 0.8, 0.792, 0.792, \
0.792, 0.8, 0.8, 0.792, 0.792, 0.8, 0.792, 0.8, 0.792, 0.792, 0.792, \
0.8, 0.792, 0.792, 0.792, 0.8, 0.792, 0.792, 0.792, 0.792, 0.792, \
0.792, 0.792, 0.8, 0.792, 0.792, 0.792, 0.8, 0.792, 0.792, 0.8, 0.8, \
0.792, 0.8, 0.8, 0.8, 0.792, 0.792, 0.8, 0.8, 0.8, 0.792, 0.792, \
0.792, 0.792, 0.8, 0.792, 0.792, 0.792, 0.792, 0.792, 0.8, 0.8, 0.8, \
0.792, 0.8, 0.8, 0.792, 0.792, 0.792, 0.8, 0.792, 0.792, 0.792, \
0.792, 0.8, 0.792, 0.792, 0.792, 0.792}
share|improve this question
up vote 5 down vote accepted

I would say, you would be the best to detect such regions and select them manually but hey, thats not so much fun so lets try:

A straightforward (and sadly good way) is it to select the datapoints within a thereshold of the maximum. I've choosen 5% and got that:

thereshold=0.95;
maxData=thereshold*Max[data];
pData=DeleteCases[Table[If[maxData<data[[i]],{i,data[[i]]},Null],{i,1,Length[data]}],Null];
fit=LinearModelFit[pData,{1,x},x];
Show[ListPlot[data],Plot[fit["BestFit"],{x,0,2000},PlotStyle->Blue],ListPlot[pData,PlotStyle->Black]]

enter image description here

Another approach is a little more difficult. We smoothing out the data with a GaussianFilter. Then we select all points, where the neighborhood is only a special thereshold away in total difference to our startpoint. Sadly the result is a little bit more innacurate imo.

l=10;
smoothData=GaussianFilter[data,4l];
s=Flatten[DeleteCases[Reap[If[Total@Abs@Differences[smoothData[[#;;#+l]]]<0.0002,Sow[{#,smoothData[[#]]}]]&/@Range[1,Length[smoothData]-l]][[2]],Null],1];
fit=LinearModelFit[s,{1,x},x];
Show[ListPlot[data,ImageSize->Medium],Plot[fit["BestFit"],{x,0,2000},PlotStyle->Blue],ListPlot[s,PlotStyle->Black]]

enter image description here

Interesting task nevertheless. I'm sure someone better than me, will post a better code though.

share|improve this answer
    
Thank you Julien! I think Gaussian Filter will be very useful for me. Thank you for introducing me great code! :D – Saesun Kim 6 hours ago

You could try Quantile Regression. The following regresses on the 90% quantile (other choices might be better), that is, it finds a line with 90% of the data below it.

Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/QuantileRegression.m"]
fit = QuantileRegressionFit[Transpose[{Range[Length[data2]], data2}], {x, 1}, x, {0.9}]
(* {0.761387 + 0.0000220083 x} *)

ListPlot[{data2, Flatten[fit /. x -> Range[Length[data2]]]}]

enter image description here

share|improve this answer
    
Thank you for your code! I think I can use this as well! – Saesun Kim 4 hours ago

Your Answer

 
discard

By posting your answer, you agree to the privacy policy and terms of service.

Not the answer you're looking for? Browse other questions tagged or ask your own question.