-
Functions
- BayesianMinimization
- ClassifierFunction
- ClassifierInformation
- ClassifierMeasurements
- Classify
- ClassPriors
- Clip
- ClusterClassify
- ClusteringComponents
- ClusteringTree
- ConvolutionLayer
- CountsBy
- DeleteDuplicates
- DimensionReduce
- DimensionReducerFunction
- DimensionReduction
- DotPlusLayer
- Eigensystem
- FeatureExtract
- FeatureExtraction
- FeatureExtractor
- FeatureExtractorFunction
- FeatureTypes
- FindClusters
- FindDistribution
- FindFit
- FindFormula
- FindGraphCommunities
- FindHiddenMarkovStates
- FindSequenceFunction
- GaussianFilter
- GeneralizedLinearModelFit
- GroupBy
- ImageAdjust
- ImageIdentify
- ImageInstanceQ
- IndeterminateThreshold
- Interpolation
- KarhunenLoeveDecomposition
- LinearModelFit
- LogisticSigmoid
- LogitModelFit
- LowpassFilter
- MeanFilter
- MeanShiftFilter
- Method
- Missing
- MovingAverage
- Nearest
- NearestNeighborGraph
- NetChain
- NetGraph
- NetTrain
- NonlinearModelFit
- PerformanceGoal
- PoolingLayer
- Predict
- PredictorFunction
- PredictorInformation
- PredictorMeasurements
- PrincipalComponents
- ProbitModelFit
- Rescale
- SingularValueDecomposition
- SmoothKernelDistribution
- SortBy
- Standardize
- Threshold
- TimeSeriesModelFit
- UtilityFunction
- Related Guides
Machine Learning
The Wolfram Language includes a wide range of integrated machine learning capabilities, from highly automated functions like Predict and Classify to functions based on specific methods and diagnostics. The functions work on many types of data, including numerical, categorical, time series, textual, and image.
ReferenceReference
General Supervised Learning
Classify — classify data into categories using a built-in classifier or learning from examples
ClassifierFunction — symbolic representation of a classifier to be applied to data
Predict — predict values from data using a built-in predictor or learning from examples
PredictorFunction — symbolic representation of a predictor to be applied to data
ClassifierMeasurements, PredictorMeasurements — performance on test data
ClassifierInformation, PredictorInformation — model information etc.
PerformanceGoal ▪ Method ▪ UtilityFunction ▪ ClassPriors ▪ IndeterminateThreshold
ImageIdentify, ImageInstanceQ — automatically recognize objects in images
Specific Methods for Supervised Learning
Nearest, NearestNeighborGraph — find nearest neighbors
FindFit — find a generalized nonlinear fit
LinearModelFit ▪ LogitModelFit ▪ NonlinearModelFit ▪ GeneralizedLinearModelFit ▪ ProbitModelFit
TimeSeriesModelFit — fit a wide variety of types of time series
Interpolation — find an interpolation of values in a dataset
FindFormula — find a simple symbolic formula for data
FindSequenceFunction — find a function to reproduce a discrete sequence
FindHiddenMarkovStates — find the most probable path in a Markov model
General Unsupervised Learning
DimensionReduce — project data onto lower-dimensional space
DimensionReduction ▪ DimensionReducerFunction
FeatureExtraction — learn a feature extractor function from data
FeatureExtract ▪ FeatureExtractorFunction
ClusterClassify — classify data into clusters
FindDistribution — find a simple symbolic distribution from data
Specific Methods Unsupervised Learning
Eigensystem ▪ SingularValueDecomposition ▪ PrincipalComponents ▪ KarhunenLoeveDecomposition
FindClusters — find clusters in numerical, textual, image, etc. data
ClusteringTree ▪ ClusteringComponents
FindGraphCommunities — find communities or clusters in graphs
SmoothKernelDistribution — find kernel density estimates for data
FindHiddenMarkovStates — infer hidden Markov states from a sequence of data
Reinforcement Learning & Optimization
BayesianMinimization — model-based minimization of arbitrary objective functions
Neural Networks »
NetGraph — represent an arbitrary neural network structure
NetChain ▪ DotPlusLayer ▪ ConvolutionLayer ▪ PoolingLayer ▪ ...
NetTrain — train any neural network on CPUs, GPUs, etc.
Machine Learning Options
FeatureExtractor — how to extract features to learn from
FeatureTypes — feature types to assume for input data
PerformanceGoal — whether to optimize for memory, quality, or speed
Preparing Data »
Standardize — transform data to have zero mean and unit variance
Clip ▪ Rescale ▪ Threshold ▪ LogisticSigmoid ▪ ImageAdjust
CountsBy ▪ GroupBy ▪ SortBy ▪ DeleteDuplicates
Filtering Data »
MovingAverage — compute moving averages of lists, time series, etc.
GaussianFilter ▪ MeanFilter ▪ MeanShiftFilter ▪ LowpassFilter ▪ ...
Missing — symbolic representation of missing elements in data
- Services
- Technical Services
- Corporate Consulting
- Company
- News
- Events
- About Wolfram
- Careers
- Contact
- Connect
- Wolfram Community
- Wolfram Blog
- Newsletter