In quantum mechanics, the probability current (sometimes called probability flux) is a mathematical quantity describing the flow of probability in terms of probability per unit time per unit area. Specifically, if one describes the probability density as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. This is equivalent to mass currents in hydrodynamics and electric currents in electromagnetism. It is a realvector, like electric current density. The concept of a probability current is a useful formalism in quantum mechanics.
If the particle has spin, it has a corresponding magnetic moment, so an extra term needs to be added incorporating the spin interaction with the electromagnetic field. In SI units:[3]
where S is the spin vector of the particle with corresponding spin magnetic moment μS and spin quantum numbers. In Gaussian units:
Finally, combining and cancelling the constants, and replacing R2 with ρ,
If we take the familiar formula for the current:
,
where v is the velocity of the particle (also the group velocity of the wave), we can associate the velocity with ∇S/m, which is the same as equating ∇S with the classical momentum p = mv. This interpretation fits with Hamilton–Jacobi theory, in which
where the V is any volume and S is the boundary of V. This is the conservation law for probability in quantum mechanics.
In particular, if Ψ is a wavefunction describing a single particle, the integral in the first term of the preceding equation, sans time derivative, is the probability of obtaining a value within V when the position of the particle is measured. The second term is then the rate at which probability is flowing out of the volume V. Altogether the equation states that the time derivative of the probability of the particle being measured in V is equal to the rate at which probability flows into V.
Transmission and reflection through potentials[edit]
In regions where a step potential or potential barrier occurs, the probability current is related to the transmission and reflection coefficients, respectively T and R; they measure the extent the particles reflect from the potential barrier or are transmitted through it. Both satisfy:
where T and R can be defined by:
where jinc, jref and jtrans are the incident, reflected and transmitted probability currents respectively, and the vertical bars indicate the magnitudes of the current vectors. The relation between T and R is consistent with probability conservation:
In terms of a unit vectornnormal to the barrier, these are equivalently:
where the absolute values are required to prevent T and R being negative.
(that is, plane waves are stationary states) but the probability current is nonzero – the square of the absolute amplitude of the wave times the particle's speed;
illustrating that the particle may be in motion even if its spatial probability density has no explicit time dependence.
For a particle in one dimension on , we have the Hamiltonian where is the discrete Laplacian, with being the right shift operator on . Then the probability current is defined as , with the velocity operator, equal to and is the position operator on . Since is usually a multiplication operator on , we get safely write .
^Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum’s Easy Oulines Crash Course, Mc Graw Hill (USA), 2006, ISBN 978-0-07-145533-6
^Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN 978-0-521-57572-0
^Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 978-0-13-146100-0
Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0