Dynamic modulus
Dynamic modulus (sometimes complex modulus[1]) is the ratio of stress to strain under vibratory conditions (calculated from data obtained from either free or forced vibration tests, in shear, compression, or elongation). It is a property of viscoelastic materials.
Contents
Viscoelastic stress–strain phase-lag[edit]
Viscoelasticity is studied using dynamic mechanical analysis where an oscillatory force (stress) is applied to a material and the resulting displacement (strain) is measured.[2]
- In purely elastic materials the stress and strain occur in phase, so that the response of one occurs simultaneously with the other.
- In purely viscous materials, there is a phase difference between stress and strain, where strain lags stress by a 90 degree ( radian) phase lag.
- Viscoelastic materials exhibit behavior somewhere in between that of purely viscous and purely elastic materials, exhibiting some phase lag in strain.[3]
Stress and strain in a viscoelastic material can be represented using the following expressions:
- Strain:
- Stress: [3]
where
- where is frequency of strain oscillation,
- is time,
- is phase lag between stress and strain.
Storage and loss modulus[edit]
The storage and loss modulus in viscoelastic materials measure the stored energy, representing the elastic portion, and the energy dissipated as heat, representing the viscous portion.[3] The tensile storage and loss moduli are defined as follows:
- Storage:
- Loss: [3]
Similarly we also define shear storage and shear loss moduli, and .
Complex variables can be used to express the moduli and as follows:
where is the imaginary unit.