In science,
the credit goes to the man who convinces the World,
not to the man to whom the idea first occurs.
Sir Francis Darwin (1848-1925)
son of Charles Darwin
Everything of importance has been said before, by
somebody who did not discover it. Alfred
North Whitehead (1861-1947)
Video: The Michelson-Morley Experiment,
by David L. Goodstein1 |
2 |
3 |
4
Popular Fallacies in the History of Science
(2002-10-08) Heliocentric "Copernican" System
Did the idea of an heliocentric system originate with Copernicus?
No. The idea is far more ancient than that...
Although
Heraclides
of Pontus (387-312 BC)
deserves credit for suggesting that the Earth rotates around an axis,
he did not yet place the Sun at the center of the Solar system
(in spite of what some reports are still stating).
Copernicus (1473-1543) himself credits
Aristarchus
of Samos (c.310-230 BC) for the idea of an heliocentric system.
This heliocentric idea is not explicited in the only surviving work of Aristarchus,
where the distances and sizes of the Moon and the Sun are
estimated.
However, Aristarchus makes it clear that he estimated the Sun
to be much bigger than the Earth (although he still underestimated
its true size). This may indeed have suggested to him that the smaller body
ought to be revolving around the larger one.
Actually, the heliocentric views of Aristarchus are precisely known to us from the
short account given in "The Sand Reckoner"
by his illustrious (younger) contemporary,
Archimedes of Syracuse (287-212 BC).
Incidentally, Archimedes was then seeking
to present as "nonsensical" the belief in an
infinite Cosmos, which Aristarchus advocated...
Plutarch (c. 45-125) reports that
Seleucus of Seleucia
(born c. 190 BC) was championing the heliocentric system
and teaching it as an established fact, in the second century BC
(Seleucia was an important Greek city
in Mesopotamia, on the west bank of the
Tigris River).
At that exact same time, however,
Hipparchus
of Rhodes (190-120 BC) reverted to the geocentric belief
and was instrumental in killing the heliocentric idea altogether
[cf. Thomas
Little Heath (1861-1940)].
The idea was strongly suppressed by
the Church
for centuries.
Reviving it took more than a little courage from
the early followers of Copernicus.
—
Tell me, why do people always say it was natural for Man to assume that the Sun
went round the Earth, rather than that the Earth was rotating?
—
Obviously, because it just looks as though the Sun is going round the Earth.
—
Well, what would it have looked like, if
it had looked as though the Earth was rotating !?
Ludwig Wittgenstein(1889-1951)
(in TED talk by Richard Dawkins
July 2005)
PJH
(2003-10-15; e-mail) Galileo's Assistants
Who was Galileo's assistant for his famous experiment?
The legendary experiment, which allegedly took place at the
Leaning Tower of Pisa, consisted in dropping two different
weights simultaneously from the top of the Tower and supposedly
recording their simultaneous arrivals on the ground...
Well, one of Galileo's assistant, Vincenzio Viviani (1622-1703),
did play a major role in this, but not in the way you might expect, as
Viviani was not even around to witness the event, if it ever occurred!
Some Assistants
and/or Noted Disciples of Galileo's
When he became Galileo's assistant in October 1638,
Viviani was only a 16-year old youth from Florence, whose promising aptitude for
mathematics had earned him the commendation of Galileo's patron,
the Grand Duke Ferdinand II of Tuscany.
By that time, the ageing Galileo had already lived under house arrest for 5 years
in Arcetri. He had lost his eyesight in 1637
and he welcomed the live-in presence of the devoted Viviani, who wrote and read for him.
When Galileo died in the evening of January 8 of 1642, he was surrounded
by only three people: His own son, Vincenzio Galilei (1606-1649),
his junior assistant Vincenzio Viviani and his famous new
senior assistant, Evangelista Torricelli, who had joined him only weeks before:
Evangelista Torricelli (1608-1647)
was
an orphan who studied at the University of Sapienza under a former student
and close friend of Galileo's, Benedetto Castelli (1578-1643).
Torricelli served as Castelli's secretary from 1626 to 1632.
According to Dava Sobel (author of the bestseller "Galileo's Daughter")
Torricelli had first written to Galileo in the summer of 1632
to tell him how he had been converted to the Copernican views by reading Galileo's own
Dialogue on the Two Chief World Systems, Ptolemaic and Copernican, the very book
which would seal the Inquisition's case against Galileo in 1633
(and have him condemned to spend the rest of his life under house arrest).
In 1640, Torricelli wrote a treatise on the motion of bodies
(Trattato del Moto) in which he described experimental evidence for
the laws of falling bodies expressed by Galileo.
As he was dying and needed help to polish his final scientific thoughts,
Galileo made Torricelli his assistant in October 1641.
When Galileo passed away a few weeks later,
Torricelli succeeded him as professor at the Florentine Academy and as
court mathematician to the Grand Duke Ferdinand.
Torricelli kept working with Vincenzio Viviani, Galileo's younger assistant.
In 1643, the two men invalidated Galileo's own theory about the inability
of aspiration pumps to raise water above a certain height
[of less than 10 m]. Torricelli and Viviani
suspected that the limited tensile strength of water was not
at fault, despite what Galileo had conjectured, but that the weight of the liquid
column was of crucial importance.
They transposed the effect to mercury and observed that if a mercury-filled glass
tube is inverted into a bowl of mercury without letting any air in,
then the level of mercury in the tube stabilizes at a height of about 760 mm
over the level of the liquid in the bowl.
In 1644, Torricelli correctly stated that the cavity above the mercury in the
tube contains "absolutely nothing" and that the mercury is pushed up
the tube by the pressure of the air in the atmosphere, which varies slighlty from
day to day. Torricelli is thus remembered as the inventor of the
barometer.
(Note that the "Torricellian vacuum" in the tube actually contains mercury vapor at
extremely low pressure, but this is largely irrelevant.)
When Torricelli died in 1647, Viviani suceeded him in the position Galileo
had occupied only a few years earlier.
In 1654, a dozen years after Galileo's death,
Viviani began writing the first biography of Galileo.
He clearly embellished things a little...
In particular, the colorful narration of the experiment at the
Leaning Tower of Pisa
is a fiction invented by Viviani...
The Leaning Tower of Pisa and the Alleged "Experiment"
What the Italians call "la Torre pendente di Pisa"
is a bell tower, whose seven bells were used until 1950.
The architect Bonnano Pisano began its
construction on August 9, 1173 in the Campo dei Miracoli
(Pisa's "Field of Miracles").
When the building reached the 3rd level (about 10 years later),
its leaning was already pronounced, and construction stopped for 90 years.
The main tower was completed between 1275 and 1284
by Giovanni Di Simone, who compensated for the
tilt by giving the building a slight banana shape.
The architect Tommaso Pisano (son of Andrea Pisano)
finally added the top belfry between 1350 and 1372.
In Galileo's times, more than two centuries later,
the Leaning Tower of Pisa was pretty much what it is today:
A building of about 14 700 000 kg
rising 58.363 m above its foundations,
with a 4 m overhang that would increase steadily
(at a rate of about 1.2 mm per year)
if it was not for regular heroic countermeasures...
Galileo's "famous experiment" at the Leaning Tower of Pisa
probably never took place. Galileo himself never claimed to have performed the
deed, and the fantastic decorum described by Viviani is even more unlikely.
The experiment would have been largely inconclusive anyway,
except to disprove the gross misconception [wrongly] attributed to
Aristotle,
according to which the speed of falling objects ought to be proportional
to their weights (this much is easily proven wrong by less dramatic experiments which
Galileo did perform).
Galileo may have meant to do the grand experiment,
but the idea probably occurred to him at a time when it could not be conveniently
carried out, because he no longer lived next to the Tower:
Galileo moved from Pisa to Padua in 1591.
He had began to study falling bodies only two years earlier, in 1589.
Three years earlier, in 1586, the Dutch engineer Simon Stevin
had already accomplished the key experiment by releasing simultaneously,
from a height of 30 feet, two very different pieces of lead (1 pound and 10 pounds)
and observing that the sounds of their impacts "could not be separated".
For the record, such experiments only "work" properly in
a vacuum,
where a feather and a ball of lead do fall at the same rate.
(Otherwise, a given shape, size and speed imply a certain value of the
air resistance which does constitute a lesser percentage of the weight
of an heavier object.)
Astronaut David R. Scott successfully performed Galileo's experiment
(using a feather and a hammer)
on the lunar surface, on August 2, 1971
[see video].
The same result is routinely demonstrated [at a much lesser cost]
with an evacuated sealed tube containing two very different objects,
usually a feather and a coin...
Other problems exist when conducting such experiments with the "technology"
of Galileo's time, including a curious systematic error (due to muscle fatigue)
when people are attempting to release simultaneously balls of different weights.
A tribute to the observational skills of Galileo was that he recorded negative
results to similar experiments which could be explained this way...
So much for the simplicity of legendary "experiments".
(2002-10-05)
Switching Calendars
Was Newton really born the year Galileo died?
No.
Galileo died 361 days before the
birth of Newton.
The death of one and the birth of the other occurred in different Julian years
(1641 and 1642)
and in different Gregorian years (1642 and 1643).
The year is the same (1642) only when the death of Galileo is recorded
in the Gregorian calendar (then prevalent in Italy) and the birth of Newton
is recorded in the Julian calendar (still prevalent in England at the time).
Julian
Calendar
Gregorian Calendar
Galileo Galilei died (in Arcetri)
Dec. 29,
1641
Jan. 8, 1642
Isaac Newton was born (in Woolsthorpe)
Dec. 25,
1642
Jan. 4, 1643
Another complication may arise for Julian dates between January 1 and March 24
(included) recorded in England before 1752.
The legal year in England, under the old [Julian] calendar, changed on
March 25.
In other words, Newton was 6 days old on December 31, 1641 and clearly 7 days old on
the following day, which was legally January 1, 1641.
On the other hand, Gregorian years have always been incremented on January 1.
To disambiguate the relevant dates, it's customary to specify either "O.S."
(Old Style) or "N.S." (New Style) after the year number.
For example, the birthdate of Joseph Priestley
is properly given as:
Wednesday, 13 March 1733 (O.S.)
Priestley himself would have said that he was born in 1733.
Nevertheless, any consistent chronological list of scientists should indicate 1734 as the year
of Priestley's birth (the exact Gregorian date was 24 March 1734 ).
Primitive Roman calendars
evolved into a somewhat variable system which featured 12 short months and,
on some years, a thirteenth month
(called either Intercalaris or Mercedonius)
whose length was ultimately decided politically...
This dubious system was replaced by an early form of the
Julian calendar,
introduced by Julius Caesar in 45 BC.
After a rough start and too many leap years, the Julian calendar
was given its final form by Augustus, and every fourth year was made a leap
year starting with AD 8.
Our current calendar is only a slight modification
of the latter Julian calendar.
It's known as the Gregorian calendar because it was introduced under the
authority of Gregory XIII, né Ugo Boncompagni (1502-1585),
who was Pope from 1572 to 1585.
The Gregorian reform of the calendar was actually engineered by the astronomer
Christopher Clavius
(1538-1612) after preliminary work by
Luigi Lilio
(c.1510-1576).
The aim was to make seasons correspond permanently
to what they were under the Julian calendar in AD 325,
at the time of the First Ecumenical Council of the Christian Church,
the First
Council of Nicea, when rules were adopted for the date of
Easter
(usually, the first Sunday after a full moon occurring no sooner than March 21).
10 days were dropped in 1582 (October 15 followed October 4)
and new rules were devised to have only 97 leap-years in 400 years
(instead of 1 in 4).
Various countries
adopted the "new" calendar only much later.
In particular, the earliest valid Gregorian date in England
(and in what was then known as the American Colonies) is September 14, 1752,
which followed September 2, 1752 (the discrepancy had
grown from 10 to 11 days by that time, because the year 1700 was not a leap year
in the Gregorian calendar).
This happened more than a century after Newton's birth,
which was thus still recorded as Christmas day of 1642,
although the year in Italy was already 1643.
On the other hand, it is correct to remark that
Stephen Hawking
was born (January 8, 1942) exactly 300 years after the death of Galileo
(January 8, 1642) since both events were recorded in the same Gregorian calendar.
(2003-11-03) The Lorenz Gauge [ not
due to H.A. Lorentz ] The 1867 addendum
to Maxwell's equations of electromagnetism (1864)
This is the following relation between the vectorial and scalar potentials A
and f, which would otherwise be defined with more leeway.
In a classical context, this equation has some aesthetic appeal,
as it makes the d'Alembertians of A and f
respectively proportional to the density of current and the density of charge...
In a quantum context not anticipated by Lorenz at the time,
the potentials have a real significance of their own,
which is happily consistent with that gauge :
div(A) +
1
¶f
= 0
[ In SI units, or Giorgi's MKSA system.]
c2
¶t
The thing is very often misspelled "Lorentz Gauge" (with a "t") because of
a fallacious attribution to Hendrik Antoon Lorentz
(1853-1928; Nobel 1902).
The relation was published in 1867 by the Danish physicist
Ludwig V. Lorenz (1829-1891).
The Danish spelling is Ludvig Valentin Lorenz.
At the time, the future Dutch physicist
H.A. Lorentz was only 14 years old.
Ironically, it turns out that Ludwig Lorenz is best remembered for the relation he
established in 1880, building on earlier work (1878)
by the young H.A. Lorentz
about the theoretical index of refraction of a dielectric substance.
This result is now known as the
Lorentz-Lorenz relation...
Spelling bee, anyone?
(2002-10-08) On the Origins of the Special Theory of Relativity
Was Einstein the first to formulate the (Special) Theory of Relativity?
The secret to creativity is knowing how to hide your
sources. Albert Einstein (1879-1955)
What is now known as the
Special
Theory of Relativity
was first completely formulated by the prolific French mathematician
J. Henri Poincaré (1854-1912), who published key results with
a relativistic perspective in 1898, 1900, 1904 and on June 5, 1905.
Albert Einstein discovered the whole thing independently and published his original
paper on the subject on
June 30, 1905.
Einstein later added the adjective "special" to describe this initial theory,
in contradistinction
to the 1915 theory of General Relativity,
his relativistic theory of gravitation (of which Einstein stands as the
undisputed sole author).
Neither Einstein nor Poincaré ever quoted each other on the subject.
Both, however, often cite
Hendrik A. Lorentz (1853-1928) who put forth the relevant
coordinate transform in 1899 and 1904,
incorporating the so-called FitzGerald-Lorentz contraction, which had been
proposed by
George FitzGerald (1851-1901) in 1889
(and, independently, by Lorentz himself in 1892)
to explain the negative result of the
Michelson-Morley
experiment of 1887.
Lorentz himself credited
Sir Oliver Lodge (1851-1940) for
first publishing the idea (in 1893).
The full Lorentz transform was first proposed in
1897 by Joseph Larmor (1857-1942)
of Ireland (who is credited for the discovery, in the same year, of the
classical formula
for the power radiated by an accelerated charge).
10 years earlier (in 1887)
Woldemar Voigt (1850-1919)
had proposed a coordinate transform which explained the Michelson-Morley result
(and the transverse Doppler shift )
but featured an erroneous overall scale factor implying some asymmetry between
the stationary and the moving system, against relativistic principles.
Yet, in hindsight, Voigt's idea of involving time as a coordinate was a key breakthrough.
H.A. Lorentz and Voigt were in touch, but it took years
for Lorentz to adopt this viewpoint and find a
correct transform with the desirable symmetry.
Voigt also introduced modern tensors into physics,
a key element in Einstein's own General Theory of Relativity.
The symbol "c" for the speed of light (Einstein's constant)
was introduced in 1894 by a famous student of Voigt's, Paul Drude (1863-1906).
Drude used "c" for electromagnetism, but in an optical context he retained the symbol "V"
which had been introduced by James Clerk Maxwell.
Einstein himself used "V" until 1907.
The famous equation E = m c 2 has been spotted
several times times before Albert Einstein proposed it, in September 1905.
Such reports include:
1904: Friedrich Hasenöhrl (1874-1915) a teacher of
Erwin Schrödinger.
The Special Theory of Relativity did not take off until 1908, when
Max Planck (1858-1947) put his considerable weight in the balance and wrote
a paper on the subject.
The same year,
Hermann
Minkowski expresssed the Maxwell-Lorentz equations [of electromagnetism]
relativistically in tensor form,
and showed that Newton's theory of gravity was not consistent
with Special Relativity.
The whole controversy
may have been one of the reasons why Relativity was not
mentioned in 1921 when Einstein was awarded the Nobel prize.
Instead, Einstein was officially rewarded for his 1905 explanation of the laws of
the photoelectric effect, which may be construed as a
discovery of the photon.
In 1912 (the year Poincaré died)
Wien
had even proposed that Lorentz and Einstein
share the Nobel prize for Special Relativity, because:
[...] the merits of both investigators [are] comparable.
Some authors have felt that Einstein's huge fame was not entirely deserved, but calling him
a plagiarist
is certainly not fair: Just like any other genius in history,
Albert Einstein had to build on the work of his elders. Period.
Most of Einstein's precursors were about 25 years older than himself.
They were all the heirs of Maxwell
(1831-1879) who died the year Einstein was born...
Maxwell's key contribution was his set of
differential equations unifying electricity and magnetism,
and predicting electromagnetic propagation at a fixed celerity.
Their mathematical form seemed to make them only valid in some fixed "aether".
Relativity was born with the gradual realization that
Maxwell's equations should hold unchanged
even for observers in relative uniform motion.
The nontrivial coordinate relations postulated by the
Lorentz transform allowed just that.
Before Maxwell, those who paved the road include a few French physicists:
Augustin Jean Fresnel (1788-1827)
was born on the de Broglieestate.
(His mother was the daughter of the overseer. His father worked for a few years
as an architect for the family of the future
Nobel laureate.)
Fresnel was educated at Caen and at the
Ecole Polytechnique (X) in Paris
[just like this writer, on both counts, incidentally].
Fresnel is best remembered for the type of lenses now named after him
(featuring concentric grooves) which are used in lighthouses,
spotlights, flat plastic magnifiers, etc.
Among other fundamental scientific investigations,
Fresnel showed that two light beams polarized in perpendicular planes
do not exhibit optical interference,
thus establishing the transverse nature of lightwaves
(whereas sound in a fluid is a longitudinal wave).
Fresnel also investigated light in a moving medium:
In this context, we call Fresnel coefficient of drag
a parameter f whose dependence on the refractive index (n)
was found empirically by Fizeau and explained by Einstein:
f =
1 - 1/n2
Armand Hippolyte Louis Fizeau (1819-1896)
discovered the Doppler effect in 1848,
independently of Christian Doppler
(1803-1853) who wrote on the subject in
1842: The effect is sometimes
called Doppler-Fizeau, especially in French texts.
In 1849, Fizeau gave the first direct experimental value of the speed of light,
by using a rotating toothed wheel (Fizeau wheel)
and a distant mirror.
In 1851, he used interferometry to investigate how the speed of a moving liquid affects
the celerity of light propagating in it.
He obtained a result intermediary between what would be expected of a wave
bound to the medium (like sound in a fluid)
and something independent of it.
Einstein explained this relativistically.
Jean Bernard Léon Foucault (1819-1868) is still
remembered for the pendulum experiment named after him,
which detects the rotation of the Earth by mechanical means.
In 1851, he first demonstrated this publicly,
under the dome of the Panthéon in Paris.
Foucault is on record as the inventor of the gyrocompass (1852).
Electric currents induced in a metallic mass (eddy currents) were discovered by
Foucault; they are now often called Foucault currents.
He improved on Fizeau's method to measure the speed of light
(using a mirrored wheel instead of a toothed wheel).
Foucault proved the speed of light to be greater in air than in water,
as is consistent with an undulatory phenomenon.
(2016-11-16) Who really discovered natural radioactivity ?
Abel Nièpce de Saint-Victor discovered radioactivity before Becquerel.
1857
1896
The credit for the discovery of radioactivity
is usually given to Henri Becquerel (1852-1908)
who received half of the 1903 Nobel prize in physics for that.
His celebrated serendipitous discovery entailed processing an unexposed photographic plate which had been
stored in the dark next to
potassium uranyl sulfate. That event took place on March 1, 1896.
However, the very same observation with uranium salts and photographic plates
had been made 39 years earlier (in 1857) by
Abel
Nièpce de Saint-Victor (1805-1870) whose first cousin
Nicéphore Niépce (1765-1833)
had invented photography in 1826.
That early discovery was duly heralded as major
at the time (1857) in particular by the chemist
Michel Chevreul
(1786-1889)who was then the superior of Abel Niepce.
Chevreul is one of the
72 major
French scientists whose names appear on the Eiffel Tower.
However, tthe World was apparently not quite ready for that yet...
By the time of Becquerel's own discovery (1896) the previous work of
Niépce de Saint-Victor had apparently been all but forgotten...
Curiously enough, one of the few noteworthy physicists who did
notice in due time was Becquerel's own father!
Edmond Becquerel (1820-1891)
fully discussed the future discovery of his son in a book he published in 1868
(La lumière, ses causes et ses effets).
At the time, the younger Becquerel was 16,
but it's hard to believe he never read the book of his father.
The record clearly shows that he had totally forgotten about the book
28 years after its publication, since he never mentioned it.
His father was no longer around to point that out to him...
(2002-10-05) The Oil-Drop Experiment [to measure electron charge]
Did Robert A. Millikan (1868-1953) design the famous experiment which helped him earn a Nobel prize?
Not entirely.
Much of the credit should have gone to his graduate student
Harvey Fletcher,
who was not even named a co-author of the key relevant paper.
Originally, Millikan reproduced an
experiment involving drops of water,
conceived by J.J. Thompson and E. Regener.
On this subject, let's quote
David Goodstein,
who is sympathetic to Millikan:
Unfortunately the single-droplet method had a serious flaw. The water
evaporated too rapidly to allow accurate measurements. Millikan, Begeman and a new
graduate student named Harvey Fletcher discussed the situation and decided to try to do
the experiment with some substance that evaporated less rapidly than water. Millikan
assigned to Fletcher the job of devising a way to do the experiment using mercury or
glycerin or oil.
Fletcher immediately got a crude apparatus working, using tiny droplets of watch
oil made by means of a perfume atomizer he bought in a drugstore. When he focused his
telescope on the suspended oil droplets, he could see them dancing around in what is
called Brownian motion, caused by impacts of unseen air molecules. This itself was a
phenomenon of considerable current scientific interest. When Fletcher got the busy
Millikan to look through his telescope at the dancing suspended droplets of oil, Millikan
immediately dropped all work on water, and turned his attention to refining the oil-drop
method.
A couple of years later (around 1910) Fletcher and Millikan had produced two
results. One was an accurate determination of the unit electric charge (called e) from
observing the rate of fall or rise of oil drops in gravitational and electric fields, and the
other was a determination of the product Ne, where N is a separate constant called
Avagadro's number. The product Ne came out of observations of Brownian motion.
Millikan approached his student Fletcher with a deal. Fletcher could use a published
paper as his Ph.D. thesis, but only if he was sole author. Millikan proposed that Fletcher
be sole author on the Brownian motion work and that he, Millikan be sole author on the
unit electric charge work. This is the source of the assertion that Millikan mistreated his
graduate students. No doubt Millikan understood that the measurement of e would
establish his reputation, and he wanted the credit for himself. Fletcher understood this
too, and he was somewhat disappointed, but Millikan had been his protector and
champion throughout his graduate career, and so he had little choice but to accept the
deal. The two men remained good friends throughout their lives, and Fletcher saw to it
that this version of the story was not published until after Millikan's death, and after his
own death.
Harvey
Fletcher (1884-1981) himself summarized his collaboration with Millikan
in the June 1962 issue of Physics Today.
There were in fact 5 papers involved; Millikan is named as sole author of
the first (and most important) one, Fletcher is named as the sole author of 2 others
(including the one he used as his doctoral dissertation) and the last two
appeared with both names as joint authors.
(2005-08-19) About Customary Physical Units
Errata about physical units and noteworthy physical quantities.
As we compiled a rather large catalog of physical units over the years,
we found a large number of errors throughout the literature.
They propagate at an alarming rate.
We've lost track of most of the sources, but feel compelled to
post the following list of errata, as a public service.
(If you must know, this list is sorted alphabetically with respect to the
main unit, scale, quantity, or concept involved.)
These have been thoroughly investigated, so we may hope to avoid the same
embarrassment as one author who made a similar claim (about the rarely-used
"poncelet" unit) and got it wrong!
We did pay particular attention to wrong
claims that we found more than once...
At times, it really looks like nobody ever bothers to check mathematical facts.
One particularly startling example is our first entry,
about the Beaufort rating of an 18 mph wind, for which we have yet to find a
single correct table!
An 18 mph wind should be rated "Force 5" (not 4) in the
Beaufort scale.
A square centimeter candle
is 60 candelas (not the other way around).
The mean curvature is the half-sum (not the sum) of the principal curvatures.
One gram of radium has an activity of 9 curies (not just one curie); out of
this, 1/9 is from the direct decay of radium nuclei, 8/9 is from subsequent
decays of all the decay products of radium (the proportions are exact under
"equilibrium" conditions, where the relative concentrations remain constant).
As a unit, the day remains 86400s,
but the "mean solar day" increases.
The density of the Earth is not 5.2, but 5.52 (more precisely,
5.5153 kg/L).
Ordinary screws and corkscrews are dextrorsum (not sinistrorsum).
A logarithmic spiral's evolute is congruent but usually not equal to itself.
The frigorie (1000 negative gram-calories) is a unit of energy, not power.
According to modern tables for the density of water, the old definition of the
UK gallon implied measurement at about 16.3333°C (61.4°F),
not 15.18°C (since that definition was
enacted at a time when the liter was not exactly equal to a cubic decimeter:
998.859 g/L "then" is 998.887 g/L "now".)
The moment of inertia of the Earth is about
8´10 37 kg×m 2
(not 10 42 ).
A jansky is not a
W/m2/Hz, it is 26 orders of magnitude smaller!
The speed of sound in
solid magnesium is 6402 m/s (not 4602 m/s).
The orbital energy of the Earth around the Sun is
-2.65´10 33 J
(not 10 40 ).
39.37 inches are exactly 0.999998 m
(39.37 US Survey inches to the meter).
Newton
was born in the Gregorian year 1643 (Julian Christmas day 1642).
The "pascal per square meter" is not a unit of pressure; the "pascal" is.
A poncelet is not 100 W, but 980.665 W (100 kgm/s).
The spat (whole sphere) is a unit of solid angle,
it is not a planar angle.
A torr is not quite equal to a
millimeter of mercury (it's 0.14 ppm less).
"Water" units of pressure are conventional
units which do not depend on the actual density of water
(under conditions prevailing during measurement).
A meter of water is defined either as precisely 9806.65 Pa
or roughly 9806.38 Pa
(using a conventional density of either 1 kg/L or 999.972 g/L).
As a unit, a year is equal to
31557600 seconds; other "years" are
not units.
(2007-11-02) The True Face of Adrien-Marie Legrendre
A case of mistaken identity.
Before I wrote the first version of this article,
every biography of the great
French mathematician
Adrien-Marie Legendre
(1752-1833) showed a lithograph which was also associated
with an unrelated contemporary politician
named Louis
Legendre (1752-1797)...
The godfather of Louis Legendre was "officier de bouche" of the Queen.
Louis himself served as a sailor for 10 years before setting up shop as
a butcher in Saint-Germain-des-Prés (Paris).
He was a leader in the Storming of the Bastille
(July 14, 1789).
In spite of his lack of education and problems with diction, his early enthusiasm for
revolutionary ideas got him elected to the National Convention and he served as
its president.
The allegiances of Louis Legendre to various
revolutionary leaders changed several times.
He was already suffering from dementia when he got elected to what would be
his last position, at the Conseil des 500.
Louis Legendre
(1752-1797) politician unrelated to the
mathematician
The above lithograph
is signed by François-Séraphin Delpech (1778-1825)
who is also known for his later collaboration with Zéphirin Belliard (1798-fl.1843?)
on a portrait of
the young Adolphe Thiers
(1797-1877).
The Encyclopedia Britannica
has erroneously presented the above as a reproduction by Delpech of a painting
due to Belliard, although Louis Legendre died the year before Zéphirin Belliard
was born!
The Belgian writer
Jacques Noizet correctly identified this picture with portrait number 13
in another lithograph representing the entire political group of Louis Legendre
(les Montagnards) as of 1793.
That picture appears, for example, on page 678 of Dictionnaire d'Histoire de France
(Perrin, 1981).
The whole issue had been actively discussed on the Internet for several months
before I became aware of the controversy, as
Jean-Bernard François (2007-10-31) quoted my own
thumbnail rendition of the
coat-of-arms of Adrien-Marie Legendre (of which I have since published a better
full-sized depiction).
I then discovered
one
obscure record showing that the library of the Institut de France
had a portrait of the mathematician Adrien-Marie Legendre, which had been totally
overlooked! It appears in a sketchbook of 73 caricatures
(73 portraits-charge de membres de l'Institut)
next to a similar caricature of Fourier (heads in full color, bodies lightly drawn in pencil).
Adrien-Marie Legendre
Mathematician (1752-1833)
After securing a great contact at the library of the Institut de France
(from a retired French librarian, Jeanne Refleu,
the widow of my late math teacher Lucien Refleu)
I failed to follow through for several months. I just posted my discovery here,
without fetching the actual picture...
This grabbed the attention of the aforementioned Jean-Bernard François
(a.k.a. Infofiltrage ) who did the legwork and
kindly presented me with a
photograph of the relevant
page from that sketchbook (on 2008-12-28).
Thus, the caricature at right seems to be
the only extant portrait of the great mathematician!
Album de 73
portraits-charge aquarellés
des membres de l'Institut (1820) by
Julien-Léopold Boilly (1796-1874)
(wrongly attributed to his father, Louis-Léopold Boilly, 1761-1845)
Courtesy of Biliothèque de l'Institut de France
In the U.S. at least
the above drawing is clearly in the public domain (as a straight
reproduction of a two-dimensional work
created well before 1888 by someone who died well before 1938).
EPILOGUE :
True Face of Legendre... The word is spreading !
A color picture of the original page depicting
Legendre and Fourier is on the
cover of
that issue, with an
explanatory note
by Bill Casselman, graphics editor of the
Notices of the American Mathematical Society (AMS).
2009-11-11: My own prepublication e-mail buzz about the above.
2009-11-14: The full-sized caricature appears automatically on the pages of Wikipedia
dedicated to Legendre, in
Catalan,
Norwegian
and French.
A correct tiny thumbnail also appears in the list
of the 72 scientists who have their names on the Eiffel Tower
(stories in
French
and German).
It is clear that the aforementioned article of Peter Duren in the Notices of the American
Mathematical Society (Dec. 2009) has done more than all previous efforts to
popularize this unique portrait of Adrien-Marie Legendre.
On 20009-11-12 (e-mail) Robin Whitty
wrote: M. Legendre may rest easy in his grave,
although he might feel it ironic that it should be
that particular likeness that the efforts
of 21st century scholars would produce !
"The Mathematicians",
a digital painting by an artist identified as
The Alucinor
(2008-08-25) Group portrait of 35 major
mathematicians (out of necessity, some faces are purely fictional).
(2015-02-04) Portraits of Ambroise Paré (1510-1590)
Popular pictures don't match the portrait authentified by his descendants.
At left is the painting still most commonly used to evoke the famous surgeon.
At right is the true portrait inherited by his descendants...
"Official" picture
Authentified portrait
The "correct" portrait was unearthed by
Dr. Claude Stéphen Le Paulmier,
who made it the centerpiece of his 1884 biography of Paré, entitled:
Ambroise Paré
D'après de nouveaux documents découverts
aux archives nationales et des papiers de famille (avec un portrait inédit de Paré).
There was at least one question about this (by someone signing "Firmin")
in one printed ancestor of Internet forums:
L'intermédiaire des chercheurs et curieux (1043, 49, p.897, June 1904).
Dr. Le Paulmier obtained that previously unpublished portrait from the archives
of the descendants of Catherine Paré and Claude Hedelin.
He could establish that it was painted just after the second wedding of Ambroise Paré.
(2012-09-16) On the lack of iconography for Apollonius of Perga Apollonius of Tyana is unrelated to the mathematician !
To anyone primarily interested in science or mathematics, there's only one
"Apollonius"
worth remembering: Apollonius
of Perga (262-190 BC). Just like there's only one
Archimedes worth mentioning.
However, one unrelated
Apollonius of Tyana
became extremely famous, a couple of centuries later, as a religious figure
(which some have likened to Christ).
All coins and statues made in the image of "Apollonius"
are meant to represent that other man, as the slightest bit of research will show...