I am curious about simplifying the following expression:
$$ \log\bigg(\sum_{n=0}^{\infty} \frac{x^{\frac{n}{v}}{}}{n!}\bigg)^{v}, v>0, x>0 $$
Is there any rule to simplify a summation inside the log?
Also, is there any way to derive the following expression:
$$ \frac{d}{dx}\log\bigg(\sum_{n=0}^{\infty} \frac{x^{\frac{n}{v}}{}}{n!}\bigg)^{v} $$ or $$ \frac{d}{dv}\log\bigg(\sum_{n=0}^{\infty} \frac{x^{\frac{n}{v}}{}}{n!}\bigg)^{v} $$
Thanks!