Let $X$ be a set and let $P$ be the set of all partial orderings of $X$. ⪯⪯$(P, \leq_p)$ where $\leq_p$ is the ordering such that $\leq\leq_p \leq '$ if $(x\leq y)\Rightarrow (x\leq ' y) \forall x,y\in X$ is a poset. I want to show, using Zorn's lemma, that given any partial ordering $\leq$ there exists a total ordering $\leq '$ such that $\leq\leq_p\leq '$; to accomplish this I tried to apply Zorn's lemma to the set $C:=\{\leq '':\leq\leq_p\leq ''\}$ I tried to show that every totally ordered subset $D$ of $C$ an upper bound (defined in the ⪯text as an element $x\in D$ such that $y\leq_p x \forall y\in D$) but I haven't been able to do so ( I tried by defining an ordering $\leq_m$ such that $x\leq_m y \Leftrightarrow \exists \leq \in D$ such that $x\leq y$ which should be an upper bound but I haven't been able to show that such an ordering belongs to D i.e. that it is an upper bound and not a strict upper bound).
(Note: I know that another user asked a similar question in an almost three years old post and tried a similar approach in proving this fact but he didn't explain why the ordering $\leq_m$ is an upper bound for $D$, that's why I'm asking this question)
So I'd appreciate any help in finishing this proof.
Best regards,
lorenzo.