Sign on

SAO/NASA ADS General Science Abstract Service


· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· References in the article
· Citations to the Article (18) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
A formal test of the theory of universal common ancestry
Authors:
Theobald, Douglas L.
Affiliation:
AA(Department of Biochemistry, Brandeis University, Waltham, Massachusetts 01778, USA)
Publication:
Nature, Volume 465, Issue 7295, pp. 219-222 (2010). (Nature Homepage)
Publication Date:
05/2010
Origin:
NATURE
Abstract Copyright:
(c) 2010: Nature
DOI:
10.1038/nature09014
Bibliographic Code:
2010Natur.465..219T

Abstract

Universal common ancestry (UCA) is a central pillar of modern evolutionary theory. As first suggested by Darwin, the theory of UCA posits that all extant terrestrial organisms share a common genetic heritage, each being the genealogical descendant of a single species from the distant past. The classic evidence for UCA, although massive, is largely restricted to `local' common ancestry-for example, of specific phyla rather than the entirety of life-and has yet to fully integrate the recent advances from modern phylogenetics and probability theory. Although UCA is widely assumed, it has rarely been subjected to formal quantitative testing, and this has led to critical commentary emphasizing the intrinsic technical difficulties in empirically evaluating a theory of such broad scope. Furthermore, several researchers have proposed that early life was characterized by rampant horizontal gene transfer, leading some to question the monophyly of life. Here I provide the first, to my knowledge, formal, fundamental test of UCA, without assuming that sequence similarity implies genetic kinship. I test UCA by applying model selection theory to molecular phylogenies, focusing on a set of ubiquitously conserved proteins that are proposed to be orthologous. Among a wide range of biological models involving the independent ancestry of major taxonomic groups, the model selection tests are found to overwhelmingly support UCA irrespective of the presence of horizontal gene transfer and symbiotic fusion events. These results provide powerful statistical evidence corroborating the monophyly of all known life.
Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

  New!

Find Similar Abstracts:

Use: Authors
Title
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints