Polygonal Number
A polygonal number is a type of figurate number that is a generalization of triangular, square,
etc., to an
-gon for
an arbitrary positive
integer. The above diagrams graphically illustrate the process by which the polygonal
numbers are built up. Starting with the
th triangular
number
, then
|
(1)
|
Now note that
|
(2)
|
gives the
th square
number,
|
(3)
|
gives the
th pentagonal
number, and so on. The general polygonal number can be written in the form
|
(4)
| |||
|
(5)
|
where
is the
th
-gonal number (Savin
2000). For example, taking
in (5)
gives a triangular number,
gives a square
number, etc.
Polygonal numbers are implemented in the Wolfram Language as PolygonalNumber.
Call a number
-highly polygonal if it is
-polygonal in
or more ways out of
, 4, ... up to
some limit. Then the first few 2-highly polygonal numbers up to
are 1, 6, 9,
10, 12, 15, 16, 21, 28, (OEIS A090428). Similarly,
the first few 3-highly polygonal numbers up to
are 1, 15,
36, 45, 325, 561, 1225, 1540, 3025, ... (OEIS A062712).
There are no 4-highly polygonal numbers of this type less than
except for
1.
The generating function for the
-gonal numbers is
given by the beautiful formula
|
(6)
|
Fermat proposed that every number is expressible as at most
-gonal numbers (Fermat's polygonal number theorem).
Fermat claimed to have a proof of this result, although this proof has never been
found. Jacobi, Lagrange (in 1772), and Euler all proved the square case, and Gauss
proved the triangular case in 1796. In 1813, Cauchy proved the proposition in its
entirety.
An arbitrary number
can be checked to see if it is a
-gonal number as follows. Note the identity
|
(7)
|
so
must be a perfect
square. Therefore, if it is not, the number cannot be
-gonal. If it is
a perfect square, then solving
|
(8)
|
for the rank
gives
|
(9)
|
An
-gonal number is equal to the sum of the
-gonal number of the same statistical
rank and the triangular number of the previous
statistical rank.
polygonal number


