Pascal's Triangle

DOWNLOAD Mathematica Notebook EXPLORE THIS TOPIC IN the MathWorld Classroom

Pascal's triangle is a number triangle with numbers arranged in staggered rows such that

 a_(nr)=(n!)/(r!(n-r)!)=(n; r),
(1)

where (n; r) is a binomial coefficient. The triangle was studied by B. Pascal, although it had been described centuries earlier by Chinese mathematician Yanghui (about 500 years earlier, in fact) and the Persian astronomer-poet Omar Khayyám. It is therefore known as the Yanghui triangle in China. Starting with n=0, the triangle is

 1
1  1
1  2  1
1  3  3  1
1  4  6  4  1
1  5  10  10  5  1
1  6  15  20  15  6  1
(2)

(OEIS A007318). Pascal's formula shows that each subsequent row is obtained by adding the two entries diagonally above,

 (n; r)=(n!)/((n-r)!r!)=(n-1; r)+(n-1; r-1).
(3)
Binary plot for Pascal's triangle

The plot above shows the binary representations for the first 255 (top figure) and 511 (bottom figure) terms of a flattened Pascal's triangle.

The first number after the 1 in each row divides all other numbers in that row iff it is a prime.

The sums P_n of the number of odd entries in the first n rows of Pascal's triangle for n=0, 1, ... are 0, 1, 3, 5, 9, 11, 15, 19, 27, 29, 33, 37, 45, 49, ... (OEIS A006046). It is then true that

 0.812...<P_nn^(-theta)<=1
(4)

(Harborth 1976, Le Lionnais 1983), with equality for n a power of 2, and the power of n given by the constant

 theta=(ln3)/(ln2)=log_23=1.58496250072115...
(5)

(OEIS A020857). The sequence of cumulative counts of odd entries has some amazing properties, and the minimum possible value beta=0.812... (OEIS A077464) is known as the Stolarsky-Harborth constant.

Pascal's triangle contains the figurate numbers along its diagonals, as can be seen from the identity

sum_(i=1)^(n)(i; j)=(n+1)/(j+1)(n; j)
(6)
=(n+1; j+1).
(7)

In addition, the sum of the elements of the ith row is

 sum_(j=0)^i(i; j)=2^i,
(8)

so the sum of the first k rows (i.e., rows 0 to k-1) is the Mersenne number

 sum_(i=0)^(k-1)2^i=2^k-1.
(9)
FibonacciShallowDiags

The "shallow diagonals" of Pascal's triangle sum to Fibonacci numbers, i.e.,

1=1
(10)
1=1
(11)
2=1+1
(12)
3=2+1
(13)
5=1+3+1
(14)
8=3+4+1
(15)

and, in general,

 sum_(k=0)^(|_n/2_|)(n-k; k)=F_(n+1).
(16)

The numbers of times that the numbers 2, 3, 4, ... occur in Pascal's triangle are given by 1, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 2, 4, ... (OEIS A003016; Ogilvy 1972, p. 96; Comtet 1974, p. 93; Singmaster 1971). Similarly, the numbers of rows in which the numbers 2, 3, 4, ... occur are 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, ... (OEIS A059233).

By row 210, the numbers

120=(10; 3)=(10; 7)=(16; 2)=(16; 14)=(120; 1)=(120; 119)
(17)
210=(10; 4)=(10; 6)=(21; 2)=(21; 19)=(210; 1)=(210; 209)
(18)
3003=(14; 6)=(14; 8)=(15; 5)=(15; 10)=(78; 2)=(78; 76)
(19)

have appeared six times, more than any other number (excluding 1). By row 1540,

 1540=(22; 3)=(22; 19)=(56; 2)=(56; 54)=(1540; 1) 
 =(1540; 1539)
(20)

has now occurred six times, by row 3003,

 3003=(14; 6)=(14; 8)=(15; 5)=(15; 10)=(78; 2) 
 =(78; 76)=(3003; 1)=(3003; 3002)
(21)

has now occurred 8 times, and by row 7140, 7140 has appeared six times as well. In fact, the numbers that occur five or more times in Pascal's triangle are 1, 120, 210, 1540, 3003, 7140, 11628, 24310, ... (OEIS A003015), with no others up to 33×10^(16).

It is known that there are infinitely many numbers that occur at least 6 times in Pascal's triangle, namely the solutions to

 r=(n; m-1)=(n-1; m)
(22)

given by

m=F_(2k-1)F_(2k)
(23)
n=F_(2k)F_(2k+1),
(24)

where F_i is the ith Fibonacci number (Singmaster 1975). The first few such values of r for k=1, 2, ... are 1, 3003, 61218182743304701891431482520, ... (OEIS A090162).

There is an unexpected connection between Pascal's triangle and the Delannoy numbers via Cholesky decomposition (G. Helms, pers. comm., Aug. 29, 2005). What's more, despite the two being mathematically unrelated, there's also a topical connection between Pascal's triangle and the so-called rascal triangle; this relationship also provides a tangential relation to the cake cutting problem and hence to the cake numbers.

Pascal's triangle (mod 2) turns out to be equivalent to the Sierpiński sieve (Wolfram 1984; Crandall and Pomerance 2001; Borwein and Bailey 2003, pp. 46-47). Guy (1990) gives several other unexpected properties of Pascal's triangle.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.