Goodstein's Theorem

For all n, there exists a k such that the kth term of the Goodstein sequence G_k(n)=0. In other words, every Goodstein sequence converges to 0.

The secret underlying Goodstein's theorem is that the hereditary representation of n in base b mimics an ordinal notation for ordinals less than some number. For such ordinals, the base bumping operation leaves the ordinal fixed whereas the subtraction of one decreases the ordinal. But these ordinals are well ordered, and this allows us to conclude that a Goodstein sequence eventually converges to zero.

Amazingly, Paris and Kirby showed in 1982 that Goodstein's theorem is not provable in ordinary Peano arithmetic (Borwein and Bailey 2003, p. 35).

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.