Bolzano-Weierstrass Theorem

Every bounded infinite set in R^n has an accumulation point.

For n=1, an infinite subset of a closed bounded set S has an accumulation point in S. For instance, given a bounded sequence a_n, with -C<=a_n<=C for all n, it must have a monotonic subsequence a_(n_k). The subsequence a_(n_k) must converge because it is monotonic and bounded. Because S is closed, it contains the limit of a_(n_k).

The Bolzano-Weierstrass theorem is closely related to the Heine-Borel theorem and Cantor's intersection theorem, each of which can be easily derived from either of the other two.

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.