Let denote a random vector (corresponding to the measurements), taken from a parametrized family of probability density functions or probability mass functions, which depends on the unknown deterministic parameter . The parameter space is partitioned into two disjoint sets and . Let denote the hypothesis that , and let denote the hypothesis that . The binary test of hypotheses is performed using a test function .
meaning that is in force if the measurement and that is in force if the measurement . Note that is a disjoint covering of the measurement space.
The Karlin–Rubin theorem can be regarded as an extension of the Neyman–Pearson lemma for composite hypotheses.[1] Consider a scalar measurement having a probability density function parameterized by a scalar parameter θ, and define the likelihood ratio . If is monotone non-decreasing, in , for any pair (meaning that the greater is, the more likely is), then the threshold test:
where is chosen such that
is the UMP test of size α for testing
Note that exactly the same test is also UMP for testing
Although the Karlin-Rubin theorem may seem weak because of its restriction to scalar parameter and scalar measurement, it turns out that there exist a host of problems for which the theorem holds. In particular, the one-dimensional exponential family of probability density functions or probability mass functions with
has a monotone non-decreasing likelihood ratio in the sufficient statisticT(x), provided that is non-decreasing.
Finally, we note that in general, UMP tests do not exist for vector parameters or for two-sided tests (a test in which one hypothesis lies on both sides of the alternative). The reason is that in these situations, the most powerful test of a given size for one possible value of the parameter (e.g. for where ) is different from the most powerful test of the same size for a different value of the parameter (e.g. for where ). As a result, no test is uniformly most powerful in these situations.