Showing posts with label Tools. Show all posts
Showing posts with label Tools. Show all posts

30 July 2015

Get your hands on Android Studio 1.3

Posted by Jamal Eason, Product Manager, Android

Previewed earlier this summer at Google I/O, Android Studio 1.3 is now available on the stable release channel. We appreciated the early feedback from those developers on our canary and beta channels to help ship a great product.

Android Studio 1.3 is our biggest feature release for the year so far, which includes a new memory profiler, improved testing support, and full editing and debugging support for C++. Let’s take a closer look.

New Features in Android Studio 1.3

Performance & Testing Tools

  • Android Memory (HPROF) Viewer

    Android Studio now allows you to capture and analyze memory snapshots in the native Android HPROF format.

  • Allocation Tracker

    In addition to displaying a table of memory allocations that your app uses, the updated allocation tracker now includes a visual way to view the your app allocations.

  • APK Tests in Modules

    For more flexibility in app testing, you now have the option to place your code tests in a separate module and use the new test plugin (‘com.android.test’) instead of keeping your tests right next to your app code. This feature does require your app project to use the Gradle Plugin 1.3.

Code and SDK Management

  • App permission annotations

    Android Studio now has inline code annotation support to help you manage the new app permissions model in the M release of Android. Learn more about code annotations.

  • Data Binding Support

    New data brinding features allow you to create declarative layouts in order to minimize boilerplate code by binding your application logic into your layouts. Learn more about data binding.

  • SDK Auto Update & SDK Manager

    Managing Android SDK updates is now a part of the Android Studio. By default, Android Studio will now prompt you about new SDK & Tool updates. You can still adjust your preferences with the new & integrated Android SDK Manager.

  • C++ Support

    As a part of the Android 1.3 stable release, we included an Early Access Preview of the C++ editor & debugger support paired with an experimental build plugin. See the Android C++ Preview page for information on how to get started. Support for more complex projects and build configurations is in development, but let us know your feedback.

Time to Update

An important thing to remember is that an update to Android Studio does not require you to change your Android app projects. With updating, you get the latest features but still have control of which build tools and app dependency versions you want to use for your Android app.

For current developers on Android Studio, you can check for updates from the navigation menu. For new users, you can learn more about Android Studio on the product overview page or download the stable version from the Android Studio download site.

We are excited to launch this set of features in Android Studio and we are hard at work developing the next set of tools to make develop Android development easier on Android Studio. As always we welcome feedback on how we can help you. Connect with the Android developer tools team on Google+.

26 June 2015

An update on Eclipse Android Developer Tools

Posted by Jamal Eason, Product Manager, Android
Over the past few years, our team has focused on improving the development experience for building Android apps with Android Studio. Since the launch of Android Studio, we have been impressed with the excitement and positive feedback. As the official Android IDE, Android Studio gives you access to a powerful and comprehensive suite of tools to evolve your app across Android platforms, whether it's on the phone, wrist, car or TV.

To that end and to focus all of our efforts on making Android Studio better and faster, we are ending development and official support for the Android Developer Tools (ADT) in Eclipse at the end of the year. This specifically includes the Eclipse ADT plugin and Android Ant build system.

Time to Migrate

If you have not had the chance to migrate your projects to Android Studio, now is the time. To get started, download Android Studio. For many developers, migration is as simple as importing your existing Eclipse ADT projects in Android Studio with File → New→ Import Project as shown below:

For more details on the migration process, check out the migration guide. Also, to learn more about Android Studio and the underlying build system, check out this overview page.

Next Steps

Over the next few months, we are migrating the rest of the standalone performance tools (e.g. DDMS, Trace Viewer) and building in additional support for the Android NDK into Android Studio.
We are focused on Android Studio so that our team can deliver a great experience on a unified development environment. Android tools inside Eclipse will continue to live on in the open source community via the Eclipse Foundation. Check out the latest Eclipse Andmore project if you are interested in contributing or learning more.
For those of you that are new to Android Studio, we are excited for you to integrate Android Studio into your development workflow. Also, if you want to contribute to Android Studio, you can also check out the project source code. To follow all the updates on Android Studio, join our Google+ community.







28 May 2015

Android M Developer Preview & Tools

By Jamal Eason, Product Manager, Android

Today at Google I/O, we announced a developer preview of the next version of Android, the M release. Last year’s developer preview was a first for Android and we received great feedback. We want to continue to give you developers early access to Android so you have time to get your apps ready for the next version of Android. This time with the M Developer Preview, we will provide a clear timeline for testing and feedback plus more updates to the preview build.

Visit the M Developer Preview site for downloads and documentation.

The Android M release: improving the fundamentals

For the M release, we focused on improving the core user experience of Android, from fixing thousands of bugs, to making some big changes to the fundamentals of the platform:

  • Permissions - We are giving users control of app permissions in the M release. Apps can trigger requests for permissions at runtime, in the right context, and users can choose whether to grant the permission. Making permission requests right when they’re needed means users can get up and running in your app faster. Also, users have easy access to manage all their app permissions in settings. On M, as a developer, you should design your app to prompt for permissions in context and account for permissions that don’t get granted. As more devices upgrade to M, app permission behavior will be a critical development flow to test.
  • Runtime App Permissions

  • App links - We are making it even easier to link between apps. Android has always allowed apps to register to natively handle URLs. Now you can add an autoVerify attribute to your app manifest so that users can be linked deep into your native app without any disambiguation prompt. App links, along with App Indexing for Google search, make it easier for users to discover and re-engage with your app.
  • Battery - We’re making Android devices smarter about managing power through a new feature called Doze. With M, Android uses significant motion detection to learn if a device has been left unattended for a while. In this state, Android will exponentially back off background activity, trading off a little bit of app freshness for longer battery life. Consider how this may affect your app; for instance, if you’re building a chat app, you may want to make use of high priority messages to wake your app when the device is dozing.

The Android M release: advancing assistance and payments

We are also delighted to announce a couple of big new features:

  • Now on tap - We are making it even easier for Android users to get assistance with Now on tap -- whenever they need it, wherever they are on their device. For example, if your friend texts you about dinner at a new restaurant, without leaving the app, you can ask Google Now for help. Using just that context, Google can find menus, reviews, help you book a table, navigate there, and deep link you into relevant apps. As a developer, you can implement App Indexing for Google search to let users discover and re-engage with your app through Now on tap.
  • Now on tap

  • Android Pay & Fingerprint - We’ve built on our work with Near Field Communications (NFC) in Gingerbread and Host Card Emulation in Kitkat to develop Android Pay. Android Pay will enable Android users to simply and securely use their Android phone to pay in stores or in thousands of Android Pay partner apps. With M, native fingerprint support enhances Android Pay by allowing users to confirm a purchase with their fingerprint. Moreover, fingerprint on M can be used to unlock devices and make purchases on Google Play. With new APIs in M, it’s easy for you to add fingerprint authorization to your app and have it work consistently across a range of devices and sensors.

These are just a few highlights from the M Developer Preview that we announced today. The M preview will be available for download right after the keynote.

Android Developer Tools

In addition to the developer preview, we are launching new tools to help you in the development of your Android App:

  • Android Studio v1.3 Preview - To help take advantage of the M Developer Preview features, we are releasing a new version of Android Studio. Most notable is a much requested feature from our Android NDK & game developers: code editing and debugging for C/C++ code. Based on JetBrains Clion platform, the Android Studio NDK plugin provides features such as refactoring and code completion for C/C++ code alongside your Java code. Java and C/C++ code support is integrated into one development experience free of charge for Android app developers. Update to Android Studio v1.3 via the Canary channel and let us know what you think.
  • Android Studio 1.3 with Android NDK Support

  • Android Design Support Library - Making Material design apps gets even easier with the new Android Design support library. We have packaged a set a key design components (e.g floating action button, snackbar, navigation view, motion enabled Toolbars) that are backward compatible to API 7 and can be added to your app to create a modern, great looking Android app without building everything from scratch.
  • Google Play Services - Today we also are releasing v7.5 of Google Play services which includes new features ranging from Smart Lock for Passwords, new APIs for Google Cloud Messaging and Google Cast, to Google Maps API on Android Wear devices.

Get Started

The M Developer Preview includes an updated SDK with tools, system images for testing on the official Android emulator, and system images for testing on Nexus 5, Nexus 6, Nexus 9, and Nexus Player devices. We are excited to expand the program and give you more time to ensure your apps support M when it launches this fall. Based on your feedback, we plan to update the M Developer preview system images often during the developer preview program. The sooner we hear from you, the more feedback we can integrate, so let us know!

To get started with the M Developer Preview and prepare your apps for the full release, just follow these steps:

  1. Update to Android Studio v1.3+ Preview
  2. Visit the M Developer Preview site for downloads and documentation.
  3. Explore the new APIs & App Permissions changes
  4. Explore the Android Design Support Library and Google Play Services 7.5 APIs
  5. Get the emulator system images through the SDK Manager or download the Nexus device system images.
  6. Test your app with your supported Nexus device or emulator
  7. Give us feedback

21 April 2015

Android Support Library 22.1

Posted by Ian Lake, Developer Advocate

You may have heard the phrase ‘the best code is no code.’ While we don’t recommend not writing any code at all, the code you do write should be adding unique value to your app rather than replicating common boilerplate code. The Android Support Library is one of the best resources for accomplishing this by taking care of the little things for you.

The latest release of the Android Support Library is no different, adding a number of extremely helpful components and changes across the Support V4, AppCompat, Leanback, RecyclerView, Palette, and Renderscript libraries. From the new AppCompatActivity and AppCompatDialog to a new guided step flow for Android TV, there’s a lot to get excited about in this release.

Support V4

The Support V4 library serves as the base of much of the Android Support Library and contains many of the classes focused on making backward compatibility much easier.

DrawableCompat now brings drawable tinting back to API 4: simply wrap your Drawable via DrawableCompat.wrap(Drawable) and setTint(), setTintList(), and setTintMode() will just work: no need to create and maintain separate drawables only to support multiple colors!

In addition, we’re making some of the internals of Palette available to all via the ColorUtils class, giving you pre-built tools to better work with colors. ColorUtils makes it easy to calculate the contrast ratio between colors, determine the minimum alpha value to maintain a minimum contrast (perfect for ensuring readable text), or convert colors to their HSL components.

Interpolators are an important part of any animation system, controlling the rate of change in an animation (say accelerating, decelerating, etc). A number of interpolators were added in Lollipop to android.R.interpolator including fast_out_linear_in, fast_out_slow_in, and linear_out_slow_in: important parts of building authentic motion. These are now available via the Support Library via the FastOutLinearInInterpolator, FastOutSlowInInterpolator, and LinearOutSlowInInterpolator classes, making it possible to use these via code for all animations. In addition to those pre-built interpolators, we’ve also created PathInterpolatorCompat, allowing you to build quadratic and cubic Bezier curves as well.

This release also moves the Space widget from the GridLayout library into Support V4, making it available without requiring a separate dependency. The Space widget is a lightweight, invisible View that can be used to create gaps between components.

AppCompat

The AppCompat Support Library started with humble, but important beginnings: a single consistent Action Bar for all API 7 and higher devices. In revision 21, it took on new responsibility: bringing material color palette, widget tinting, Toolbar support, and more to all API 7+ devices. With that, the name ActionBarActivity didn’t really cover the full scope of what it really did.

In this release, ActionBarActivity has been deprecated in favor of the new AppCompatActivity. However, this wasn’t just a rename. In fact, the internal logic of AppCompat is now available via AppCompatDelegate - a class you can include in any Activity, hook up the appropriate lifecycle methods, and get the same consistent theming, color tinting, and more without requiring you to use AppCompatActivity (although that remains the easiest way to get started).

With the help of the new AppCompatDelegate, we’ve also added support for consistent, material design dialogs via the AppCompatDialog class. If you’ve used AlertDialog before, you’ll be happy to know there is also now a Support Library version in support.v7.app.AlertDialog, giving you the same API as well as all the benefits of AppCompatDialog.

The ability to tint widgets automatically when using AppCompat is incredibly helpful in keeping strong branding and consistency throughout your app. This is done automatically when inflating layouts - replacing Button with AppCompatButton, TextView with AppCompatTextView, etc. to ensure that each could support tinting. In this release, those tint aware widgets are now publicly available, allowing you to keep tinting support even if you need to subclass one of the supported widgets.

The full list of tint aware widgets at this time is:
  • AppCompatAutoCompleteTextView
  • AppCompatButton
  • AppCompatCheckBox
  • AppCompatCheckedTextView
  • AppCompatEditText
  • AppCompatMultiAutoCompleteTextView
  • AppCompatRadioButton
  • AppCompatRatingBar
  • AppCompatSpinner
  • AppCompatTextView

Lollipop added the ability to overwrite the theme at a view by view level by using the android:theme XML attribute - incredibly useful for things such as dark action bars on light activities. Now, AppCompat allows you to use android:theme for Toolbars (deprecating the app:theme used previously) and, even better, brings android:theme support to all views on API 11+ devices.

If you’re just getting started with AppCompat, check out how easy it is to get started and bring a consistent design to all of your users:


Leanback

With the Leanback library serving as the collection of best practices for Android TV apps, we’d be remiss to not make an even better 10’ experience as part of the release with the new guided step functionality.

This set of classes and themes can be used to build a multiple step process that looks great on Android TV. It is constructed from a guidance view on the left and a list of actions on the right. Each is customizable via themes with a parent of Theme.Leanback.GuidedStep or, if even more customization is needed, through custom a GuidanceStylist and GuidedActionsStylist.

You’ll also find a large number of bug fixes, performance improvements, and an extra coat of polish throughout the library - all with the goal of making the Leanback experience even better for users and developers alike.

RecyclerView

Besides a healthy set of bug fixes, this release adds a new SortedList data structure. This collection makes it easy to maintain a sorted list of custom objects, correctly dispatching change events as the data changes through to RecyclerView.Adapter: maintaining the item added/deleted/moved/changed animations provided by RecyclerView.

In addition, SortedList also supports batching changes together, dispatching just a single set of operations to the Adapter, ensuring the best user experience when a large number of items change simultaneously.

Palette

If you’ve been using Palette to extract colors from images, you’ll be happy to know that it is now 6-8 times faster without sacrificing quality!

Palette now uses a Builder pattern for instantiation. Rather than directly calling Palette.generate(Bitmap) or their equivalents, you’ll use Palette.from(Bitmap) to retrieve a Palette.Builder. You can then optionally change the maximum number of colors to generate and set the maximum size of the image to run Palette against before calling generate() or generateAsync() to retrieve the color Swatches.

Renderscript

Renderscript gives you massive compute potential and the Support Library version makes a number of the pre-defined scripts, called script intrinsics, available to all API 8+ devices. This release improves reliability and performance across all devices with an improved detection algorithm in determining whether the native Renderscript functionality can be used - ensuring the fastest, most reliable implementation is always chosen. Two additional intrinsics are also added in this release: ScriptIntrinsicHistogram and ScriptIntrinsicResize, rounding out the collection to ten.

SDK available now!

There’s no better time to get started with the Android Support Library. You can get started developing today by downloading the Android Support Library and Android Support Repository from the Android SDK Manager.

To learn more about the Android Support Library and the APIs available to you through it, visit the Support Library section on the Android Developer site.

11 December 2014

Hello World, meet our new experimental toolchain, Jack and Jill

Posted by Paul Rashidi, Developer Programs Engineer

We've been working on a new toolchain for Android that’s designed to improve build times and simplify development by reducing dependencies on other tools. Today, we’re introducing you to Jack (Java Android Compiler Kit) and Jill (Jack Intermediate Library Linker), the two tools at the core of the new toolchain.

We are making an early, experimental version of Jack and Jill available for testing with non-production versions of your apps. This post describes how the toolchain works, how to configure it, and how to let us know of your feature requests and any bugs you find.

So how does it work?

When the new tool chain is enabled, Jill will translate any libraries you are referencing to a new Jack library file (.jack). This prepares them to be quickly merged with other .jack files. The Android Gradle plugin and Jack collect any .jack library files, along with your source code, and compiles them into a set of dex files. During the process, Jack also handles any requested code minification. The output is then assembled into an APK file as normal. We also include support for multiple dex files, if you have enabled that support.

How do I use it?

Jack and Jill are already available in the 21.1.1+ Build Tools for Android Studio. Complementary Gradle support is also currently available in the Android 1.0.0+ Gradle plugin. To get started, all you need to do is make sure you're using these versions of the tooling and then add a single line in your build.gradle file. Perform a build of your application to receive a newly built APK.

android {
    ...
    buildToolsRevision '21.1.1'
    defaultConfig {
      // Enable the experimental Jack build tools.
      useJack = true
    }
    ...
}
If you want to build your app with both toolchains, Product Flavors are a great way to do this. Your build.gradle file might look something like the snippet below.
android {
    ...
    productFlavors {
        dev {
            ...
        }
        experimental {
            useJack = true
        }
        prod {
            ...
        }
    }
    ...
}

How do I configure my build?

We are making the transition to Jack as smooth as possible by supporting minification (shrinking and/or obfuscation), as well as repackaging (i.e. similar to tools like jarjar), while using the same input files as you are used to. Minification is available in the Gradle plugin immediately and repackaging will follow. You should continue to use the "minifyEnabled true" directive to reduce the size of your app among all other optimizations you would normally use. There are more details on our reference page (linked below) regarding the level of support for each type of optimization. We encourage you to provide feedback there if your current configuration isn't supported.

Give us your feedback

We are attempting to make the toolchain as easy to test out as possible and we're looking for your help to fine tune it. Use the reference page to find known issues, file feature requests, and report bugs. Happy building!

14 November 2012

Android SDK Tools, Revision 21

Posted by Xavier Ducrohet, Android SDK Tech Lead, and Angana Ghosh, Product Manager in Android

Along with the Android 4.2 SDK, we also launched a brand new update of the Android SDK Tools (Revision 21). The update includes new tools and capabilities that can help you work more efficiently as you create applications. Tools such as a new multi-config editor, and new Lint rules will help you develop apps more quickly, while a new UI test framework will give you more ways automate testing and QA for your apps. For new developers, one-click SDK download and new app templates help you get started more quickly.

Multi-config editor

A new multi-configuration editor allows you to develop and prototype your UI across various orientations, screen sizes and locales. For example, while editing your layout in portrait mode, you can see if your edits aren't visible in the shorter landscape orientation. You can see previews for other screen sizes from small phones to large tablets, you can see previews for the layout using all the available language translations in your app, and so on. You can even see how the layout appears when it is included as a fragment in a different larger layout. Finally, Android allows you to create specialized layouts for any of these configurations, and the multi configuration editor shows you these overridden layouts.

Here is a screenshot of the layout editor showing one of the layouts from the Google I/O application, across a variety of screen sizes.


More app templates

Tools R21 brings three new app templates to help you to easily add new screens to your app. There’s a new full-screen activity for use as a photo or video viewer, a settings activity to handle basic user preferences and a login activity to capture username/password.


UI Automator Test Framework

One common approach to UI testing is to run tests manually and verify that the app is behaving as expected. UI Automator is a new software testing framework available in Tools R21 that provides you with tools to easily automate UI testing tasks. It provides a GUI tool to scan and analyze the UI components of an Android application (uiautomatorviewer), a library containing APIs to create customized functional UI tests, and an execution engine to automate and run the tests against multiple physical devices. UI Automator runs on Android 4.1 (API level 16) or higher. To learn more head over to the UI Testing documentation.

One-click SDK installer

New Android SDK developers now have a convenient way to download all the various SDK components like Tools, Platform Tools, Eclipse ADT, and the latest system image with a single click. Existing developers can continue to manage their SDK components and get updates through the SDK Manager.

Revamped AVD creation dialog

The new dialog makes it easier to create Android Virtual Devices (AVDs) matching real device profiles. The AVDs will also appear in the layout editor to show you how the layouts will look.


More Lint rules

And to wrap things up there are 25 new lint rules which catch several common sources of bugs, for example deviations from Android design guide for icons, checks for mismanaged wakelocks, common sources of locale-related bugs and so on. So make sure you upgrade and let Lint loose on your projects before your next app update!

A minor bug-fix to the Android NDK is also available. For a complete list of what’s new, see the release notes for SDK Tools R21, ADT 21.0.0 and Android NDK R8c.

29 February 2012

Android Design V2: Now with stencils

[This post is by Android designer Alex Faaborg, on behalf of the entire User Experience team. —Tim Bray]

When we initially released Android Design, by far the number one request we received was for us to release stencils as well. The fine folks on the Android User Experience team are pleased today to release some official Android Design stencils for your mockup-creating pleasure.

With these stencils you can now drag and drop your way to beautifully designed Ice Cream Sandwich (Android 4.0) applications, with grace and ease. The stencils feature the rich typography, colors, interactive controls, and icons found throughout Ice Cream Sandwich, along with some phone and tablet outlines to frame your meticulously crafted creations.

Currently we have stencils available for those venerable interactive design powerhouses Adobe® Fireworks®, and Omni® OmniGraffle® and we may expand to other applications® in the future. The source files for the various icons and controls are also available, created in Adobe® Photoshop®, and Adobe® Illustrator®. Here are the downloads.

We’ll be updating these stencils over time so, as always, please send in your feedback!

Happy mockup making,
— Your friendly Android Design Droids

19 July 2011

Debugging Android JNI with CheckJNI

[This post is by Elliott Hughes, a Software Engineer on the Dalvik team — Tim Bray]

Although most Android apps run entirely on top of Dalvik, some use the Android NDK to include native code using JNI. Native code is harder to get right than Dalvik code, and when you have a bug, it’s often a lot harder to find and fix it. Using JNI is inherently tricky (there’s precious little help from the type system, for example), and JNI functions provide almost no run-time checking. Bear in mind also that the developer console’s crash reporting doesn’t include native crashes, so you don’t even necessarily know how often your native code is crashing.

What CheckJNI can do

To help, there’s CheckJNI. It can catch a number of common errors, and the list is continually increasing. In Gingerbread, for example, CheckJNI can catch all of the following kinds of error:

  • Arrays: attempting to allocate a negative-sized array.

  • Bad pointers: passing a bad jarray/jclass/jobject/jstring to a JNI call, or passing a NULL pointer to a JNI call with a non-nullable argument.

  • Class names: passing anything but the “java/lang/String” style of class name to a JNI call.

  • Critical calls: making a JNI call between a GetCritical and the corresponding ReleaseCritical.

  • Direct ByteBuffers: passing bad arguments to NewDirectByteBuffer.

  • Exceptions: making a JNI call while there’s an exception pending.

  • JNIEnv*s: using a JNIEnv* from the wrong thread.

  • jfieldIDs: using a NULL jfieldID, or using a jfieldID to set a field to a value of the wrong type (trying to assign a StringBuilder to a String field, say), or using a jfieldID for a static field to set an instance field or vice versa, or using a jfieldID from one class with instances of another class.

  • jmethodIDs: using the wrong kind of jmethodID when making a Call*Method JNI call: incorrect return type, static/non-static mismatch, wrong type for ‘this’ (for non-static calls) or wrong class (for static calls).

  • References: using DeleteGlobalRef/DeleteLocalRef on the wrong kind of reference.

  • Release modes: passing a bad release mode to a release call (something other than 0, JNI_ABORT, or JNI_COMMIT).

  • Type safety: returning an incompatible type from your native method (returning a StringBuilder from a method declared to return a String, say).

  • UTF-8: passing an invalid Modified UTF-8 byte sequence to a JNI call.

If you’ve written any amount of native code without CheckJNI, you’re probably already wishing you’d known about it. There’s a performance cost to using CheckJNI (which is why it isn’t on all the time for everybody), but it shouldn’t change the behavior in any other way.

Enabling CheckJNI

If you’re using the emulator, CheckJNI is on by default. If you’re working with an Android device, use the following adb command:

adb shell setprop debug.checkjni 1

This won’t affect already-running apps, but any app launched from that point on will have CheckJNI enabled. (Changing the property to any other value or simply rebooting will disable CheckJNI again.) In this case, you’ll see something like this in your logcat output the next time each app starts:

D Late-enabling CheckJNI

If you don’t see this, your app was probably already running; you just need to force stop it and start it again.

Example

Here’s the output you get if you return a byte array from a native method declared to return a String:

W JNI WARNING: method declared to return 'Ljava/lang/String;' returned '[B'
W              failed in LJniTest;.exampleJniBug
I "main" prio=5 tid=1 RUNNABLE
I   | group="main" sCount=0 dsCount=0 obj=0x40246f60 self=0x10538
I   | sysTid=15295 nice=0 sched=0/0 cgrp=default handle=-2145061784
I   | schedstat=( 398335000 1493000 253 ) utm=25 stm=14 core=0
I   at JniTest.exampleJniBug(Native Method)
I   at JniTest.main(JniTest.java:11)
I   at dalvik.system.NativeStart.main(Native Method)
I 
E VM aborting

Without CheckJNI, you’d just die via SIGSEGV, with none of this output to help you!

New JNI documentation

We’ve also recently added a page of JNI Tips that explains some of the finer points of JNI. If you write native methods, even if CheckJNI isn’t rejecting your code, you should still read that page. It covers everything from correct usage of the JavaVM and JNIEnv types, how to work with native threads, local and global references, dealing with Java exceptions in native code, and much more, including answers to frequently-asked JNI questions.

What CheckJNI can’t do

There are still classes of error that CheckJNI can’t find. Most important amongst these are misuses of local references. CheckJNI can spot if you stash a JNIEnv* somewhere and then reuse it on the wrong thread, but it can’t detect you stashing a local reference (rather than a global reference) and then reusing it in a later native method call. Doing so is invalid, but currently mostly works (at the cost of making life hard for the GC), and we’re still working on getting CheckJNI to spot these mistakes.

We’re hoping to have more checking, including for local reference misuse, in a future release of Android. Start using CheckJNI now, though, and you’ll be able to take advantage of our new checks as they’re added.

24 March 2011

Memory Analysis for Android Applications

[This post is by Patrick Dubroy, an Android engineer who writes about programming, usability, and interaction on his personal blog. — Tim Bray]

The Dalvik runtime may be garbage-collected, but that doesn't mean you can ignore memory management. You should be especially mindful of memory usage on mobile devices, where memory is more constrained. In this article, we're going to take a look at some of the memory profiling tools in the Android SDK that can help you trim your application's memory usage.

Some memory usage problems are obvious. For example, if your app leaks memory every time the user touches the screen, it will probably trigger an OutOfMemoryError eventually and crash your app. Other problems are more subtle, and may just degrade the performance of both your app (as garbage collections are more frequent and take longer) and the entire system.

Tools of the trade

The Android SDK provides two main ways of profiling the memory usage of an app: the Allocation Tracker tab in DDMS, and heap dumps. The Allocation Tracker is useful when you want to get a sense of what kinds of allocation are happening over a given time period, but it doesn't give you any information about the overall state of your application's heap. For more information about the Allocation Tracker, see the article on Tracking Memory Allocations. The rest of this article will focus on heap dumps, which are a more powerful memory analysis tool.

A heap dump is a snapshot of an application's heap, which is stored in a binary format called HPROF. Dalvik uses a format that is similar, but not identical, to the HPROF tool in Java. There are a few ways to generate a heap dump of a running Android app. One way is to use the Dump HPROF file button in DDMS. If you need to be more precise about when the dump is created, you can also create a heap dump programmatically by using the android.os.Debug.dumpHprofData() function.

To analyze a heap dump, you can use a standard tool like jhat or the Eclipse Memory Analyzer (MAT). However, first you'll need to convert the .hprof file from the Dalvik format to the J2SE HPROF format. You can do this using the hprof-conv tool provided in the Android SDK. For example:

hprof-conv dump.hprof converted-dump.hprof

Example: Debugging a memory leak

In the Dalvik runtime, the programmer doesn't explicitly allocate and free memory, so you can't really leak memory like you can in languages like C and C++. A "memory leak" in your code is when you keep a reference to an object that is no longer needed. Sometimes a single reference can prevent a large set of objects from being garbage collected.

Let's walk through an example using the Honeycomb Gallery sample app from the Android SDK. It's a simple photo gallery application that demonstrates how to use some of the new Honeycomb APIs. (To build and download the sample code, see the instructions.) We're going to deliberately add a memory leak to this app in order to demonstrate how it could be debugged.

Imagine that we want to modify this app to pull images from the network. In order to make it more responsive, we might decide to implement a cache which holds recently-viewed images. We can do that by making a few small changes to ContentFragment.java. At the top of the class, let's add a new static variable:

private static HashMap<String,Bitmap> sBitmapCache = new HashMap<String,Bitmap>();

This is where we'll cache the Bitmaps that we load. Now we can change the updateContentAndRecycleBitmap() method to check the cache before loading, and to add Bitmaps to the cache after they're loaded.

void updateContentAndRecycleBitmap(int category, int position) {
    if (mCurrentActionMode != null) {
        mCurrentActionMode.finish();
    }
 
    // Get the bitmap that needs to be drawn and update the ImageView.
 
    // Check if the Bitmap is already in the cache
    String bitmapId = "" + category + "." + position;
    mBitmap = sBitmapCache.get(bitmapId);
 
    if (mBitmap == null) {
        // It's not in the cache, so load the Bitmap and add it to the cache.
        // DANGER! We add items to this cache without ever removing any.
        mBitmap = Directory.getCategory(category).getEntry(position)
                .getBitmap(getResources());
        sBitmapCache.put(bitmapId, mBitmap);
    }
    ((ImageView) getView().findViewById(R.id.image)).setImageBitmap(mBitmap);
}

I've deliberately introduced a memory leak here: we add Bitmaps to the cache without ever removing them. In a real app, we'd probably want to limit the size of the cache in some way.

Examining heap usage in DDMS

The Dalvik Debug Monitor Server (DDMS) is one of the primary Android debugging tools. DDMS is part of the ADT Eclipse plug-in, and a standalone version can also be found in the tools/ directory of the Android SDK. For more information on DDMS, see Using DDMS.

Let's use DDMS to examine the heap usage of this app. You can start up DDMS in one of two ways:

  • from Eclipse: click Window > Open Perspective > Other... > DDMS
  • or from the command line: run ddms (or ./ddms on Mac/Linux) in the tools/ directory

Select the process com.example.android.hcgallery in the left pane, and then click the Show heap updates button in the toolbar. Then, switch to the VM Heap tab in DDMS. It shows some basic stats about our heap memory usage, updated after every GC. To see the first update, click the Cause GC button.

We can see that our live set (the Allocated column) is a little over 8MB. Now flip through the photos, and watch that number go up. Since there are only 13 photos in this app, the amount of memory we leak is bounded. In some ways, this is the worst kind of leak to have, because we never get an OutOfMemoryError indicating that we are leaking.

Creating a heap dump

Let's use a heap dump to track down the problem. Click the Dump HPROF file button in the DDMS toolbar, choose where you want to save the file, and then run hprof-conv on it. In this example, I'll be using the standalone version of MAT (version 1.0.1), available from the MAT download site.

If you're running ADT (which includes a plug-in version of DDMS) and have MAT installed in Eclipse as well, clicking the “dump HPROF” button will automatically do the conversion (using hprof-conv) and open the converted hprof file into Eclipse (which will be opened by MAT).

Analyzing heap dumps using MAT

Start up MAT and load the converted HPROF file we just created. MAT is a powerful tool, and it's beyond the scope of this article to explain all it's features, so I'm just going to show you one way you can use it to detect a leak: the Histogram view. The Histogram view shows a list of classes sortable by the number of instances, the shallow heap (total amount of memory used by all instances), or the retained heap (total amount of memory kept alive by all instances, including other objects that they have references to).

If we sort by shallow heap, we can see that instances of byte[] are at the top. As of Android 3.0 (Honeycomb), the pixel data for Bitmap objects is stored in byte arrays (previously it was not stored in the Dalvik heap), and based on the size of these objects, it's a safe bet that they are the backing memory for our leaked bitmaps.

Right-click on the byte[] class and select List Objects > with incoming references. This produces a list of all byte arrays in the heap, which we can sort based on Shallow Heap usage.

Pick one of the big objects, and drill down on it. This will show you the path from the root set to the object -- the chain of references that keeps this object alive. Lo and behold, there's our bitmap cache!

MAT can't tell us for sure that this is a leak, because it doesn't know whether these objects are needed or not -- only the programmer can do that. In this case, the cache is using a large amount of memory relative to the rest of the application, so we might consider limiting the size of the cache.

Comparing heap dumps with MAT

When debugging memory leaks, sometimes it's useful to compare the heap state at two different points in time. To do this, you'll need to create two separate HPROF files (don't forget to convert them using hprof-conv).

Here's how you can compare two heap dumps in MAT (it's a little complicated):

  1. Open the first HPROF file (using File > Open Heap Dump).
  2. Open the Histogram view.
  3. In the Navigation History view (use Window > Navigation History if it's not visible), right click on histogram and select Add to Compare Basket.
  4. Open the second HPROF file and repeat steps 2 and 3.
  5. Switch to the Compare Basket view, and click Compare the Results (the red "!" icon in the top right corner of the view).

Conclusion

In this article, I've shown how the Allocation Tracker and heap dumps can give you get a better sense of your application's memory usage. I also showed how The Eclipse Memory Analyzer (MAT) can help you track down memory leaks in your app. MAT is a powerful tool, and I've only scratched the surface of what you can do with it. If you'd like to learn more, I recommend reading some of these articles:

14 October 2010

Traceview War Story

I recently took my first serious look at Traceview, and it occurred to me, first, that there are probably a few other Android developers who haven’t used it and, second, that this is an opportunity to lecture sternly on one of my favorite subjects: performance improvement and profiling. This is perhaps a little bit Android-101; If you already know all about Traceview, you can stop here and go back to coding.

Making Apps Fast

Here’s a belief that I think I share with most experienced developers: For any app that is even moderately complex, you’re not smart enough to predict what the slow parts are going to be, because nobody is smart enough to predict where software bottlenecks will turn up.

So the smart way to write a fast app is to build it in the simplest way that could possibly work, avoiding egregiously-stupid thing like order-N-squared algorithms and doing I/O on the Android UI thread. Who knows, it might be fast enough, and then you’re done!

If it isn’t fast enough, don’t guess why. Measure it and find out, using a profiler. Actually I’ve been known to do this, when backed into a corner, using things like System.err.println("Entered at" + System.currentTimeMillis()); Fortunately, Android comes with a reasonably decent profiler, so you don’t have to get ugly like that.

Case Study: LifeSaver 2

I have this little utility in Android Market called LifeSaver 2, the details are on my personal blog. At one point, it reads the SMS and phone-call logs out of the system and persists them in a JSON text file on the SD card. Since this is kind of slow, it shows a nice dynamic progress bar. It occurred to me to wonder why it was kind of slow to write a few hundred records into a text file on a device that, after all, has a gigahertz processor.

Somebody who foolishly disregarded my advice above might assume that the slowdown had to be due to the ContentProvider Cursor machinery reading the system logs, or failing that, the overhead of writing to the SD card. A wiser person would instrument the code and find out. Let’s do that.

Turning On Tracing

I went into Saver.java and bracketed the code in its run() method like so:

       public void run() {

            android.os.Debug.startMethodTracing("lsd");

            // ... method body elided

            android.os.Debug.stopMethodTracing();
        }

The first call turns tracing on, the argument "lsd" (stands for Life Saver Debug, of course) tells the system to put the trace log in /sdcard/lsd.trace. Remember that doing this means you have to add the WRITE_EXTERNAL_STORAGE permission so you can save the trace info; don‘t forget to remove that before you ship.

[Update:] Android engineer Xavier Ducrohet writes to remind me: “DDMS has a start/stop profiling button in the ‘device view’. Upon clicking stop it launches TraceView with the trace file. This is not as fine grained as putting start/stopMethodTracing in your code but can be quite useful. For VMs earlier than froyo, the permission is required as well (DDMS basically automate getting the trace from the sd card and saving it locally before calling traceview). For Froyo+ VMs, the VM is able to send the trace file through the JDWP connection and the permission is not needed anymore (which is really useful).” Thanks, Xav!

Then you run your app, then you copy the output over to your computer, and fire up Traceview.

540> adb pull /sdcard/lsd.trace
541> traceview lsd

At this point, you will have noticed three things. First, turning tracing on really slows down your app. Second, the tracefile is big; in this case, 8.6M for a run that took like four seconds. Third, that traceview looks pretty cool.

The bars across the top show the app’s threads and how they dealt out the time; since the Nexus One is single-threaded CPU, they have to take turns. Let’s zero in on one 100-msec segment.

The top line is where my app code is running (the red segment is GC happening), the middle line is the UI thread and the bursts of activity are the ProgressBar updating, and I have no idea what the third thread, named HeapWorker, does, but it doesn’t seem a major contributor to the app’s runtime, so let’s ignore it.

The bottom of the screen is where the really interesting data is; it shows which of your methods burned the time, and can be sorted in a bunch of different ways. Let’s zero in on the first two lines.

Translated into English, this tells us that the top-level routine consumed 100% of the time if you include everything it called (well, yeah), but only 0.9% of the time itself. The next line suddenly starts to get real interesting: java.io.PrintStream.println(Object) and whatever it calls are using 65.2% of the app’s time. This is the code that writes the JSON out to the SD card. Right away, we know that apparently the task of pulling the data out of the phone’s ContentProviders doesn’t seem to be very expensive; it’s the output that’s hurting.

Can we conclude that the app is limited by the sluggish write performance of the SD card? Let’s drill down, which is done in the most obvious point-and-click way imaginable.

Ooh, there’s a nasty surprise. Of course, println calls (in effect) toString() on all its arguments. It looks like turning the arguments to strings is taking over half the time, before it even dispatches from println(Object) to println(String).

I’ll skip the step of drilling down into println(String) but it does suggest that yes, there is some slow I/O happening there, to the SD card. But let’s look inside that String.valueOf() call.

There’s your smoking pistol. It turns out that org.json.JSONObject.toString() is what we professional programmers call a, well, this is a family-friendly operation so I won’t go there. You can poke around inside it, but it’s just depressing.

What you can do, however, is sort all the routines by their “Exclusive” times, as in the number of CPU circles burned right there in the routine. Here are all of them that use 1% or more of the total execution time.

There’s a little bit of GC and Android framework View-wrangling stuff in there, but the display is dominated by org.jason and java.lang.StringBuilder code.

The Conclusion

The real conclusion is that in the case of this app, I actually don’t care about the performance. A user runs it a grand total of two times, once on the old phone and once on the new phone, and it’s got lots of eye candy, so I just don’t think there’s a problem.

If I did want to speed this up, it’s obvious what to do. First, either stop using JSON, or find a cheaper way to serialize it. Second, do fewer println() calls; glom the data together in one big buffer and just blast it out with a single I/O call. But, and here’s the key point, if I’d guessed where the bottlenecks were, I’d have been wrong, mostly.

Traceview is a nice tool, and if you don’t already know it, you owe it to yourself to learn it.