Rational Number

DOWNLOAD Mathematica Notebook EXPLORE THIS TOPIC IN the MathWorld Classroom Contribute to this entry

A rational number is a number that can be expressed as a fraction p/q where p and q are integers and q!=0. A rational number p/q is said to have numerator p and denominator q. Numbers that are not rational are called irrational numbers. The real line consists of the union of the rational and irrational numbers. The set of rational numbers is of measure zero on the real line, so it is "small" compared to the irrationals and the continuum.

The set of all rational numbers is referred to as the "rationals," and forms a field that is denoted Q. Here, the symbol Q derives from the German word Quotient, which can be translated as "ratio," and first appeared in Bourbaki's Algèbre (reprinted as Bourbaki 1998, p. 671).

Any rational number is trivially also an algebraic number.

Examples of rational numbers include -7, 0, 1, 1/2, 22/7, 12345/67, and so on. Farey sequences provide a way of systematically enumerating all rational numbers.

The set of rational numbers is denoted Rationals in the Wolfram Language, and a number x can be tested to see if it is rational using the command Element[x, Rationals].

The elementary algebraic operations for combining rational numbers are exactly the same as for combining fractions.

It is always possible to find another rational number between any two members of the set of rationals. Therefore, rather counterintuitively, the rational numbers are a continuous set, but at the same time countable.

For a, b, and c any different rational numbers, then

 1/((a-b)^2)+1/((b-c)^2)+1/((c-a)^2)

is the square of the rational number

 (a^2+b^2+c^2-ab-bc-ca)/((a-b)(b-c)(c-a))

(Honsberger 1991).

The probability that a random rational number has an even denominator is 1/3 (Salamin and Gosper 1972).

It is conjectured that if there exists a real number x for which both 2^x and 3^x are integers, then x is rational. This result would follow from the four exponentials conjecture (Finch 2003).

Wolfram Web Resources

Mathematica »

The #1 tool for creating Demonstrations and anything technical.

Wolfram|Alpha »

Explore anything with the first computational knowledge engine.

Wolfram Demonstrations Project »

Explore thousands of free applications across science, mathematics, engineering, technology, business, art, finance, social sciences, and more.

Computerbasedmath.org »

Join the initiative for modernizing math education.

Online Integral Calculator »

Solve integrals with Wolfram|Alpha.

Step-by-step Solutions »

Walk through homework problems step-by-step from beginning to end. Hints help you try the next step on your own.

Wolfram Problem Generator »

Unlimited random practice problems and answers with built-in Step-by-step solutions. Practice online or make a printable study sheet.

Wolfram Education Portal »

Collection of teaching and learning tools built by Wolfram education experts: dynamic textbook, lesson plans, widgets, interactive Demonstrations, and more.

Wolfram Language »

Knowledge-based programming for everyone.