Google Research Blog
The latest news from Research at Google
Opening up Course Builder data
Wednesday, October 09, 2013
Posted by John Cox and Pavel Simakov, Course Builder Team, Google Research
Course Builder
is an experimental, open source platform for delivering massive online open courses. When you run Course Builder, you own everything from the production instance to the student data that builds up while your course is running.
Part of being open is making it easy for you to access and work with your data. Earlier this year we shipped a tool called ETL (short for extract-transform-load) that you can use to pull your data out of Course Builder, run arbitrary computations on it, and load it back. We
wrote a post
that goes into detail on how you can use ETL to get copies of your data in an open, easy-to-read format, as well as write custom jobs for processing that data offline.
Now we’ve taken the next step and added richer data processing tools to ETL. With them, you can
build data processing pipelines
that analyze large datasets with MapReduce. Inside Google we’ve used these tools to
learn from the courses we’ve run
. We provide example pipelines ranging from the simple to the complex, along with formatters to convert your data into open formats (CSV, JSON, plain text, and XML) that play nice with third-party data analysis tools.
We hope that adding robust data processing features to Course Builder will not only provide direct utility to organizations that need to process data to meet their internal business goals, but also make it easier for educators and researchers to gauge the efficacy of the massive online open courses run on the Course Builder platform.
Sorting Petabytes with MapReduce - The Next Episode
Wednesday, September 07, 2011
Posted by Grzegorz Czajkowski, Marián Dvorský, Jerry Zhao, and Michael Conley, Systems Infrastructure
Almost three years ago we announced
results of the first ever "petasort"
(sorting a petabyte-worth of 100-byte records, following the
Sort Benchmark
rules). It completed in just over six hours on 4000 computers. Recently we repeated the experiment using 8000 computers. The execution time was 33 minutes, an order of magnitude improvement.
Our sorting code is based on
MapReduce
, which is a key framework for running multiple processes simultaneously at Google. Thousands of applications, supporting most services offered by Google, have been expressed in MapReduce. While not many MapReduce applications operate at a petabyte scale, some do. Their scale is likely to continue growing quickly. The need to help such applications scale motivated us to experiment with data sets larger than one petabyte. In particular, sorting a ten petabyte input set took 6 hours and 27 minutes to complete on 8000 computers. We are not aware of any other sorting experiment successfully completed at this scale.
We are excited by these results. While internal improvements to the MapReduce framework contributed significantly, a large part of the credit goes to numerous advances in Google's hardware, cluster management system, and storage stack.
What would it take to scale MapReduce by further orders of magnitude and make processing of such large data sets efficient and easy? One way to find out is to join Google’s systems infrastructure team. If you have a passion for distributed computing, are an expert or plan to become one, and feel excited about the challenges of exascale then definitely consider applying for a
software engineering position
with Google.
Labels
accessibility
ACL
ACM
Acoustic Modeling
Adaptive Data Analysis
ads
adsense
adwords
Africa
Android
API
App Engine
App Inventor
April Fools
Audio
Australia
Automatic Speech Recognition
Awards
Cantonese
China
Chrome
Cloud Computing
Collaboration
Computational Photography
Computer Science
Computer Vision
conference
conferences
Conservation
correlate
Course Builder
crowd-sourcing
CVPR
Data Center
data science
datasets
Deep Learning
distributed systems
Diversity
Earth Engine
economics
Education
Electronic Commerce and Algorithms
EMEA
EMNLP
Encryption
entities
Entity Salience
Environment
Exacycle
Faculty Institute
Faculty Summit
Flu Trends
Fusion Tables
gamification
Genomics
Gmail
Google Books
Google Drive
Google Science Fair
Google Sheets
Google Translate
Google Voice Search
Google+
Government
grants
HCI
Health
High Dynamic Range Imaging
ICML
ICSE
Image Annotation
Image Classification
Image Processing
Inbox
Information Retrieval
internationalization
Internet of Things
Interspeech
IPython
Journalism
jsm
jsm2011
K-12
KDD
Klingon
Korean
Labs
Linear Optimization
localization
Machine Hearing
Machine Intelligence
Machine Learning
Machine Translation
MapReduce
market algorithms
Market Research
ML
MOOC
NAACL
Natural Language Processing
Natural Language Understanding
Network Management
Networks
Neural Networks
Ngram
NIPS
NLP
open source
operating systems
Optical Character Recognition
optimization
osdi
osdi10
patents
ph.d. fellowship
PiLab
Policy
Professional Development
Public Data Explorer
publication
Publications
Quantum Computing
renewable energy
Research
Research Awards
resource optimization
Search
search ads
Security and Privacy
SIGCOMM
SIGMOD
Site Reliability Engineering
Software
Speech
Speech Recognition
statistics
Structured Data
Systems
TensorFlow
Translate
trends
TTS
TV
UI
University Relations
UNIX
User Experience
video
Vision Research
Visiting Faculty
Visualization
VLDB
Voice Search
Wiki
wikipedia
WWW
YouTube
Archive
2015
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2014
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2013
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2012
Dec
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2011
Dec
Nov
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2010
Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2009
Dec
Nov
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan
2008
Dec
Nov
Oct
Sep
Jul
May
Apr
Mar
Feb
2007
Oct
Sep
Aug
Jul
Jun
Feb
2006
Dec
Nov
Sep
Aug
Jul
Jun
Apr
Mar
Feb
Feed
Follow @googleresearch
Give us feedback in our
Product Forums
.