// Launch user interface and allow user to select file IntentSender i = Drive.DriveApi .newOpenFileActivityBuilder() .setMimeType(new String[] { “text/plain” }) .build(mGoogleApiClient); startIntentSenderForResult(i, REQ_CODE_OPEN, null, 0, 0, 0);
What does the new Google+ Sign-In mean for your Drive app, and why should you use it?
All APIs can be authorized using the “Sign in with Google” button, including the Drive API. To authorize additional scopes, just pass them in the markup for the “Sign in with Google” button like we’ve done in this example.
<span class="g-signin" data-scope="https://www.googleapis.com/auth/drive.file">
The “Sign in with Google” button can cater to whatever kind of application you create: web, client, or mobile. Now you can choose the authorization flow you like and get a token using the OAuth 2.0 client-side flow or server flow. There are loads of features, and the button is highly customizable.
I’ve saved my favorite feature until the end: when the user authorizes an application on the web, the mobile version of the app can be installed over the air onto their mobile device. Just add your Android package name when you create the button like in this second example, and your app will be automagically installed.
<span class="g-signin" data-apppackagename="org.aliafshar.android.driveapp">
I know many of your Drive apps have mobile and web components, so this should be really useful for you. This helps you provide your users with a beautiful and seamless experience on all of their devices.
All-in-all, we think you’ll find these features useful and recommend that you use the Google+ Sign-In as the preferred way to authorize a user with the Google Drive API from inside a user interface. Check out how to get started with Google+ Sign-In in the language of your choice.
When we launched version 1.0 of Google Play services to all Android 2.2+ devices worldwide in September, one of our main goals was to provide developers with better tools for working with OAuth 2.0 tokens in their Android apps.
Thanks to the new components, Android apps can get access to Google APIs with an easy-to-use authentication flow and can provide a consistent experience to both their users and developers. We recently decided to test that statement by writing a small camera app that automatically uploads photos you take to your Google Drive account.
We documented all the steps required to go from zero to hero in a quickstart guide. By following the step-by-step instructions in the guide, you’ll have a working Android app that uses Google Play services to perform authorization and the Google Drive API to upload files to Drive.
Do you want to learn how to build this app but prefer to watch a video tutorial instead of reading the documentation? We’ve got you covered! Check out the recording of the Google Developers Live session that covers the setup and running of the quickstart app.
If you’re building an Android app that integrates with Drive and have questions for us, please don’t hesitate to let us know on Stack Overflow.
Though developers are quite comfortable thinking in abstractions, we still find a lot of value in code examples and fully developed sample applications. Judging by the volume of comments, tweets, and git checkouts of the Au-to-do sample code we released a few weeks ago, our readers agree.
For Google Apps API developers who want to get started writing mobile apps, here’s a great new resource: a sample application that integrates Google Calendar API v3 with Android and illustrates best practices for OAuth 2.0. This meeting scheduler app built by Alain Vongsouvanh gets the user’s contact list, lets users select attendees, and matches free/busy times to suggest available meeting times. It provides a simple Android UI for user actions such as attendee selection:
The sample code for Meeting Scheduler demonstrates many key aspects of developing with Google Apps APIs. After authorizing all required access using OAuth 2.0, the Meeting Scheduler makes requests to the Calendar API. For example, the class FreeBusyTimesRetriever queries the free/busy endpoint to find available meeting times:
FreeBusyTimesRetriever
FreeBusyRequest request = new FreeBusyRequest(); request.setTimeMin(getDateTime(startDate, 0)); request.setTimeMax(getDateTime(startDate, timeSpan)); for (String attendee : attendees) { requestItems.add(new FreeBusyRequestItem().setId(attendee)); } request.setItems(requestItems); FreeBusyResponse busyTimes; try { Freebusy.Query query = service.freebusy().query(request); // Use partial GET to retrieve only needed fields. query.setFields("calendars"); busyTimes = query.execute(); // ... } catch (IOException e) { // ... }
In this snippet above, note the use of a partial GET request. Calendar API v3, along with many other new Google APIs, provides partial response with GET and PATCH to retrieve or update only the data fields you need for a given request. Using these methods can help you streamline your code and conserve system resources.
For the full context of all calls that Meeting Scheduler makes, including OAuth 2.0 flow and the handling of expired access tokens, see Getting Started with the Calendar API v3 and OAuth 2.0 on Android. The project site provides all the source code and other resources, and there’s a related wiki page with important configuration details.
We hope you’ll have a look at the sample and let us know what you think in the Google Apps Calendar API forum. You’re welcome to create a clone of the source code and do some Meeting Scheduler development of your own. If you find a bug or have an idea for a feature, don’t hesitate to file it for evaluation.
AccountManager
GoogleAccountManager
GoogleAccountManager googleAccountManager = new GoogleAccountManager( activity); Account[] accounts = accountManager.getAccounts();
AccountManager.getAuthToken()
AccountManagerCallback
googleAccountManager.manager.getAuthToken(account, AUTH_TOKEN_TYPE, null, activity, new AccountManagerCallback<Bundle>() { public void run(AccountManagerFuture<Bundle> future) { try { // If the user has authorized your application to use the tasks API // a token is available. String token = future.getResult().getString( AccountManager.KEY_AUTHTOKEN); // Now you can use the Tasks API... useTasksAPI(token); } catch (OperationCanceledException e) { // TODO: The user has denied you access to the API, you // should handle that } catch (Exception e) { handleException(e); } } }, null);
AUTH_TOKEN_TYPE
String AUTH_TOKEN_TYPE = ”Manage your tasks”;
useTasksAPI(String accessToken) { // Setting up the Tasks API Service HttpTransport transport = AndroidHttp.newCompatibleTransport(); AccessProtectedResource accessProtectedResource = new GoogleAccessProtectedResource(accessToken); Tasks service = new Tasks(transport, accessProtectedResource, new JacksonFactory()); service.setKey(INSERT_YOUR_API_KEY); service.setApplicationName("Google-TasksSample/1.0"); // TODO: now use the service to query the Tasks API }
service