Students and working professionals use Google Docs every day to help enhance their productivity and collaboration. The ability to easily share a document and simultaneously edit it together are some of our users' favorite product features. However, many small businesses, corporations, and educational institutions often find themselves needing to automatically generate a wide variety of documents, ranging from form letters to customer invoices, legal paperwork, news feeds, data processing error logs, and internally-generated documents for the corporate CMS (content management system).
Mail merge is the process of taking a master template document along with a data source and "merging" them together. This process makes multiple copies of the master template file and customizes each copy with corresponding data of distinct records from the source. These copies can then be "mailed," whether by postal service or electronically. Using mail merge to produce these copies at volume without human labor has long been a killer app since word processors and databases were invented, and now, you can do it in the cloud with G Suite APIs!
While the Document Service in Google Apps Script has enabled the creation of Google Docs scripts and Docs Add-ons like GFormit (for Google Forms automation), use of Document Service requires developers to operate within the Apps Script ecosystem, possibly a non-starter for more custom development environments. Programmatic access to Google Docs via an HTTP-based REST API wasn't possible until the launch of the Google Docs API earlier this year. This release has now made building custom mail merge applications easier than ever!
Today's technical overview video walks developers through the concept and flow of mail merge operations using the Docs, Sheets, Drive, and Gmail APIs. Armed with this knowledge, developers can dig deeper and access a fully-working sample application (Python), or just skip it and go straight to its open source repo. We invite you to check out the Docs API documentation as well as the API overview page for more information including Quickstart samples in a variety of languages. We hope these resources enable you to develop your own custom mail merge solution in no time!
Posted by Wesley Chun (@wescpy), Developer Advocate, Google Cloud
Google Cloud Platform (GCP) provides infrastructure, serverless products, and APIs that help you build, innovate, and scale. G Suite provides a collection of productivity tools, developer APIs, extensibility frameworks and low-code platforms that let you integrate with G Suite applications, data, and users. While each solution is compelling on its own, users can get more power and flexibility by leveraging both together.
In the latest episode of the G Suite Dev Show, I'll show you one example of how you can take advantage of powerful GCP tools right from G Suite applications. BigQuery, for example, can help you surface valuable insight from massive amounts of data. However, regardless of "the tech" you use, you still have to justify and present your findings to management, right? You've already completed the big data analysis part, so why not go that final mile and tap into G Suite for its strengths? In the sample app covered in the video, we show you how to go from big data analysis all the way to an "exec-ready" presentation.
The sample application is meant to give you an idea of what's possible. While the video walks through the code a bit more, let's give all of you a high-level overview here. Google Apps Script is a G Suite serverless development platform that provides straightforward access to G Suite APIs as well as some GCP tools such as BigQuery. The first part of our app, the runQuery() function, issues a query to BigQuery from Apps Script then connects to Google Sheets to store the results into a new Sheet (note we left out CONSTANT variable definitions for brevity):
runQuery()
CONSTANT
function runQuery() { // make BigQuery request var request = {query: BQ_QUERY}; var queryResults = BigQuery.Jobs.query(request, PROJECT_ID); var jobId = queryResults.jobReference.jobId; queryResults = BigQuery.Jobs.getQueryResults(PROJECT_ID, jobId); var rows = queryResults.rows; // put results into a 2D array var data = new Array(rows.length); for (var i = 0; i < rows.length; i++) { var cols = rows[i].f; data[i] = new Array(cols.length); for (var j = 0; j < cols.length; j++) { data[i][j] = cols[j].v; } } // put array data into new Sheet var spreadsheet = SpreadsheetApp.create(QUERY_NAME); var sheet = spreadsheet.getActiveSheet(); var headers = queryResults.schema.fields; sheet.appendRow(headers); // header row sheet.getRange(START_ROW, START_COL, rows.length, headers.length).setValues(data); // return Sheet object for later use return spreadsheet; }
It returns a handle to the new Google Sheet which we can then pass on to the next component: using Google Sheets to generate a Chart from the BigQuery data. Again leaving out the CONSTANTs, we have the 2nd part of our app, the createColumnChart() function:
CONSTANTs
createColumnChart()
function createColumnChart(spreadsheet) { // create & put chart on 1st Sheet var sheet = spreadsheet.getSheets()[0]; var chart = sheet.newChart() .setChartType(Charts.ChartType.COLUMN) .addRange(sheet.getRange(START_CELL + ':' + END_CELL)) .setPosition(START_ROW, START_COL, OFFSET, OFFSET) .build(); sheet.insertChart(chart); // return Chart object for later use return chart; }
The chart is returned by createColumnChart() so we can use that plus the Sheets object to build the desired slide presentation from Apps Script with Google Slides in the 3rd part of our app, the createSlidePresentation() function:
createSlidePresentation()
function createSlidePresentation(spreadsheet, chart) { // create new deck & add title+subtitle var deck = SlidesApp.create(QUERY_NAME); var [title, subtitle] = deck.getSlides()[0].getPageElements(); title.asShape().getText().setText(QUERY_NAME); subtitle.asShape().getText().setText('via GCP and G Suite APIs:\n' + 'Google Apps Script, BigQuery, Sheets, Slides'); // add new slide and insert empty table var tableSlide = deck.appendSlide(SlidesApp.PredefinedLayout.BLANK); var sheetValues = spreadsheet.getSheets()[0].getRange( START_CELL + ':' + END_CELL).getValues(); var table = tableSlide.insertTable(sheetValues.length, sheetValues[0].length); // populate table with data in Sheets for (var i = 0; i < sheetValues.length; i++) { for (var j = 0; j < sheetValues[0].length; j++) { table.getCell(i, j).getText().setText(String(sheetValues[i][j])); } } // add new slide and add Sheets chart to it var chartSlide = deck.appendSlide(SlidesApp.PredefinedLayout.BLANK); chartSlide.insertSheetsChart(chart); // return Presentation object for later use return deck; }
Finally, we need a driver application that calls all three one after another, the createColumnChart() function:
function createBigQueryPresentation() { var spreadsheet = runQuery(); var chart = createColumnChart(spreadsheet); var deck = createSlidePresentation(spreadsheet, chart); }
We left out some detail in the code above but hope this pseudocode helps kickstart your own project. Seeking a guided tutorial to building this app one step-at-a-time? Do our codelab at g.co/codelabs/bigquery-sheets-slides. Alternatively, go see all the code by hitting our GitHub repo at github.com/googlecodelabs/bigquery-sheets-slides. After executing the app successfully, you'll see the fruits of your big data analysis captured in a presentable way in a Google Slides deck:
This isn't the end of the story as this is just one example of how you can leverage both platforms from Google Cloud. In fact, this was one of two sample apps featured in our Cloud NEXT '18 session this summer exploring interoperability between GCP & G Suite which you can watch here:
Stay tuned as more examples are coming. We hope these videos plus the codelab inspire you to build on your own ideas.
Google Cloud Next '18 is only a few days away, and this year, there are over 500 sessions covering all aspects of cloud computing, from G Suite to the Google Cloud Platform. This is your chance to learn first-hand how to build custom solutions in G Suite alongside other developers from Independent Software Vendors (ISVs), systems integrators (SIs), and industry enterprises.
G Suite's intelligent productivity apps are secure, smart, and simple to use, so why not integrate your apps with them? If you're planning to attend the event and are wondering which sessions you should check out, here are some sessions to consider:
I look forward to meeting you in person at Next '18. In the meantime, check out the entire session schedule to find out everything it has to offer. Don't forget to swing by our "Meet the Experts" office hours (Tue-Thu), G Suite "Collaboration & Productivity" showcase demos (Tue-Thu), the G Suite Birds-of-a-Feather meetup (Wed), and the Google Apps Script & G Suite Add-ons meetup (just after the BoF on Wed). I'm excited at how we can use "all the tech" to change the world. See you soon!
Posted by Wesley Chun (@wescpy), Developer Advocate, G Suite
While most chatbots respond to user requests in a synchronous way, there are scenarios when bots don't perform actions based on an explicit user request, such as for alerts or notifications. In today's DevByte video, I'm going to show you how to send messages asynchronously to rooms or direct messages (DMs) in Hangouts Chat, the team collaboration and communication tool in G Suite.
What comes to mind when you think of a bot in a chat room? Perhaps a user wants the last quarter's European sales numbers, or maybe, they want to look up local weather or the next movie showtime. Assuming there's a bot for whatever the request is, a user will either send a direct message (DM) to that bot or @mention the bot from within a chat room. The bot then fields the request (sent to it by the Hangouts Chat service), performs any necessary magic, and responds back to the user in that "space," the generic nomenclature for a room or DM.
Our previous DevByte video for the Hangouts Chat bot framework shows developers what bots and the framework are all about as well as how to build one of these types of bots, in both Python and JavaScript. However, recognize that these bots are responding synchronously to a user request. This doesn't suffice when users want to be notified when a long-running background job has completed, when a late bus or train will be arriving soon, or when one of their servers has just gone down. Recognize that such alerts can come from a bot but also perhaps a monitoring application. In the latest episode of the G Suite Dev Show, learn how to integrate this functionality in either type of application.
From the video, you can see that alerts and notifications are "out-of-band" messages, meaning they can come in at any time. The Hangouts Chat bot framework provides several ways to send asynchronous messages to a room or DM, generically referred to as a "space." The first is the HTTP-based REST API. The other way is using what are known as "incoming webhooks."
The REST API is used by bots to send messages into a space. Since a bot will never be a human user, a Google service account is required. Once you create a service account for your Hangouts Chat bot in the developers console, you can download its credentials needed to communicate with the API. Below is a short Python sample snippet that uses the API to send a message asynchronously to a space.
from apiclient import discovery from httplib2 import Http from oauth2client.service_account import ServiceAccountCredentials SCOPES = 'https://www.googleapis.com/auth/chat.bot' creds = ServiceAccountCredentials.from_json_keyfile_name( 'svc_acct.json', SCOPES) CHAT = discovery.build('chat', 'v1', http=creds.authorize(Http())) room = 'spaces/<ROOM-or-DM>' message = {'text': 'Hello world!'} CHAT.spaces().messages().create(parent=room, body=message).execute()
The alternative to using the API with service accounts is the concept of incoming webhooks. Webhooks are a quick and easy way to send messages into any room or DM without configuring a full bot, i.e., monitoring apps. Webhooks also allow you to integrate your custom workflows, such as when a new customer is added to the corporate CRM (customer relationship management system), as well as others mentioned above. Below is a Python snippet that uses an incoming webhook to communicate into a space asynchronously.
import requests import json URL = 'https://chat.googleapis.com/...&thread_key=T12345' message = {'text': 'Hello world!'} requests.post(URL, data=json.dumps(message))
Since incoming webhooks are merely endpoints you HTTP POST to, you can even use curl to send a message to a Hangouts Chat space from the command-line:
curl
curl \ -X POST \ -H 'Content-Type: application/json' \ 'https://chat.googleapis.com/...&thread_key=T12345' \ -d '{"text": "Hello!"}'
To get started, take a look at the Hangouts Chat developer documentation, especially the specific pages linked to above. We hope this video helps you take your bot development skills to the next level by showing you how to send messages to the Hangouts Chat service asynchronously.
cell
fields
{ "repeatCell": { "range": { "endRowIndex": 1 }, "cell": { "userEnteredFormat": { "textFormat": { "bold": true } } }, "fields": "userEnteredFormat/textFormat/bold", } }
userEnteredFormat/textFormat/bold
"fields": "userEnteredFormat/textFormat(bold,italic)"
italic
addresses = GMAIL.users().settings().sendAs().list( userId='me' ).execute().get('sendAs')
{ "sendAs": [{ "sendAsEmail": string, "displayName": string, "replyToAddress": string, "signature": string, "isPrimary": boolean, "isDefault": boolean, "treatAsAlias": boolean, "smtpMsa": { "host": string, "port": integer, "username": string, "password": string, "securityMode": string }, "verificationStatus": string }, ...] }
addresses = GMAIL.users().settings().sendAs().list( userId='me', fields='sendAs(sendAsEmail,isPrimary)' ).execute().get('sendAs')