I defined
Integrate[Exp[p_. Cos[x_] + q_. Sin[x_]]*Sin[a_. Cos[x_] + b_. Sin[x_] - m_. x_],
{x_, 0, 2*Pi}] := Sqrt[-1]*Pi*((b - p)^2 + (a + q)^2)^(-m/2)*(((p^2 - q^2 + a^2 - b^2)
+ Sqrt[-1]*(2*(p*q + a*b)))^(m/2)*BesselI[m, Sqrt[(p^2 + q^2 - a^2 - b^2) -
Sqrt[-1]*(2 (a*p + b*q))]] - ((p^2 - q^2 + a^2 - b^2) -
Sqrt[-1]*(2 (p*q + a*b)))^(m/2)*BesselI[m, Sqrt[(p^2 + q^2 - a^2 - b^2) +
Sqrt[-1]*(2 (a*p + b*q))]])
In accordance with the examples given in the mathematica documentation. However, the integral only evaluates for the exact symbolic values p,q,a,b,m. If I try to evaluate any other form of the integral, e.g.
Integrate[Exp[Cos[x]+Sin[x]]*Sin[Sin[x]+Cos[x]-x],{x,0,2*Pi}]
Mathematica is unable to evaluate the integral. Why doesn't the integral, the way I've defined it, evaluate for any given values of p,q,a,b,m?