Motivation (for a new semi-symbolic integration strategy)
Consider the following integral, which cannot be done neigther by Integrate:
Integrate[BesselJ[y, x^3], {x, 0, \[Infinity]}, {y, 0, 1}]
(* Integrate[If[Re[y] > -(1/3), Gamma[1/6 + y/2]/(3*2^(2/3)*Gamma[5/6 + y/2]),
Integrate[BesselJ[y, x^3], {x, 0, Infinity},
Assumptions -> Re[y] <= -(1/3)]], {y, 0, 1}] *)
nor NIntegrate:
NIntegrate[BesselJ[y, x^3], {x, 0, \[Infinity]}, {y, 0, 1},
Method -> {"GlobalAdaptive", "MaxErrorIncreases" -> 2000}]
NIntegrate::slwcon: Numerical integration converging too slowly;
NIntegrate::eincr: The global error of the strategy GlobalAdaptive has
...
(* 0.524338 *)
Here is a plot of the integrand function over (much smaller) domain:
Plot3D[BesselJ[y, x^3], {x, 0, 10}, {y, 0, 1}, PlotPoints -> {100, 10},
MaxRecursion -> 5, PlotRange -> All, BoxRatios -> {10, 3}]

Because of the oscillatory nature of the integrand we can see why NIntegrate has difficulties.
On the other hand, Integrate can find the value of the integral integrating over $x$:
In[14]:= Integrate[BesselJ[y, x^3], {x, 0, \[Infinity]}]
Out[14]= ConditionalExpression[Gamma[1/6 + y/2]/(3*2^(2/3)*Gamma[5/6 + y/2]),
Re[y] > -(1/3)]
but it has problems integrating over $y$:
In[15]:= Integrate[BesselJ[y, x^3], {y, 0, 1}]
Out[15]= Integrate[BesselJ[y, x^3], {y, 0, 1}]
Since Integrate can do partially the integral along of the axis, we can just take that symbolic expression and give it to NIntegrate for integration over the other axis.
Semi-symbolic NIntegrate implementation
Here we make an integration strategy that combines Integrate and NIntegrate and uses Integrate over some of integration range(s) and NIntegrate for the symbolic expressions obtained by Integrate for the rest of the range(s).
The following defintion is for the initialization of the integration strategy SemiSymbolic.
Clear[SemiSymbolic];
Options[SemiSymbolic] = {"AnalyticalVariables" -> {}};
SemiSymbolicProperties = Options[SemiSymbolic][[All, 1]];
SemiSymbolic /:
NIntegrate`InitializeIntegrationStrategy[SemiSymbolic, nfs_, ranges_,
strOpts_, allOpts_] :=
Module[{t, anVars},
t = NIntegrate`GetMethodOptionValues[SemiSymbolic, SemiSymbolicProperties,
strOpts];
If[t === $Failed, Return[$Failed]];
{anVars} = t;
SemiSymbolic[First /@ ranges, anVars]
];
This is the implementation of the integaration strategy SemiSymbolic:
SemiSymbolic[vars_, anVars_]["Algorithm"[regions_, opts___]] :=
Module[{ranges, anRanges, funcs, t},
ranges = Map[Flatten /@ Transpose[{vars, #@"Boundaries"}] &, regions];
ranges = Map[Flatten, ranges, {-2}];
anRanges = Map[Select[#, MemberQ[anVars, #[[1]]] &] &, ranges];
ranges = Map[Select[#, ! MemberQ[anVars, #[[1]]] &] &, ranges];
funcs = (#@"Integrand"[])@"FunctionExpression"[] & /@ regions;
t = MapThread[
Integrate[#1, Sequence @@ #2,
Assumptions -> (#[[2]] <= #[[1]] <= #[[3]] & /@ #3)] &, {funcs,
anRanges, ranges}];
Print["SemiSymbolic::Integrate's result:", t];
If[! FreeQ[t, Integrate], Return[$Failed]];
Total[MapThread[
NIntegrate[#1, Sequence @@ #2 // Evaluate,
Sequence @@ DeleteCases[opts, Method -> _] // Evaluate] &, {t, ranges}]]
];
(Note the implementation prints the intermediate result obtained by Integrate.)
Signatures
Initialization
We can see that the new rule SemiSymbolic is defined through TagSetDelayed for SemiSymbolic and NIntegrate`InitializeIntegrationStrategy. The rest of the arguments are:
nfs -- numerical function objects; several might be given depending on the integrand and ranges;
ranges -- a list of ranges for the integration variables;
strOpts -- the options given to the strategy;
allOpts -- all options given to NIntegrate.
Algorithm
StrategySymbol[strategyData___]["Algorithm"[regions_, opts___]] := ...
The algorithm can use regions objects as described in this answer of "Determining which rule NIntegrate selects automatically".
Remarks
Testing SemiSymbolic
The strategy works without (observable) problems for the motivational integral:
In[85]:= NIntegrate[BesselJ[y, x^3], {x, 0, Infinity}, {y, 0, 1},
Method -> {SemiSymbolic, "AnalyticalVariables" -> {x}}]
During evaluation of In[85]:= SemiSymbolic::Integrate's result:{(2^-y HypergeometricPFQ[{1/6+y/2},{7/6+y/2,1+y},-(1/4)])/((1+3 y) Gamma[1+y])}
Out[85]= 0.371471
Note, the printout for the intermediate result by Integrate.
Since SemiSymbolic passes inside its body the non-method NIntegrate options it was invoked with we can also see the sampling points used by SemiSymbolic using EvaluationMonitor.
res =
Reap@NIntegrate[BesselJ[y, x^3], {x, 0, Infinity}, {y, 0, 1},
Method -> {SemiSymbolic, "AnalyticalVariables" -> {x}},
EvaluationMonitor :> Sow[{x, y}]]
During evaluation of In[78]:= SemiSymbolic::Integrate's result:{(2^-y HypergeometricPFQ[{1/6+y/2},{7/6+y/2,1+y},-(1/4)])/((1+3 y) Gamma[1+y])}
(* {0.371471, {{{x, 0.00795732}, {x, 0.0469101}, {x,
0.122917}, {x, 0.230765}, {x, 0.360185}, {x, 0.5}, {x,
0.639815}, {x, 0.769235}, {x, 0.877083}, {x, 0.95309}, {x,
0.992043}, {x, 0.00397866}, {x, 0.023455}, {x, 0.0614583}, {x,
0.115383}, {x, 0.180092}, {x, 0.25}, {x, 0.319908}, {x,
0.384617}, {x, 0.438542}, {x, 0.476545}, {x, 0.496021}, {x,
0.503979}, {x, 0.523455}, {x, 0.561458}, {x, 0.615383}, {x,
0.680092}, {x, 0.75}, {x, 0.819908}, {x, 0.884617}, {x,
0.938542}, {x, 0.976545}, {x, 0.996021}}}} *)
ListPlot[res[[2, 1, All, 2]], Frame -> True]

Further tests
Below are some other tests / examples.
In[50]:= NIntegrate[x^2 + y^2 + z^2, {x, 0, 1}, {y, 0, 1}, {z, 0, 1},
Method -> {SemiSymbolic, "AnalyticalVariables" -> {x, y}}]
During evaluation of In[50]:= SemiSymbolic::Integrate's result:{2/3+z^2}
Out[50]= 1.
Note that the symbolic integration was done over two variables.
In[66]:= res =
Reap@NIntegrate[x^2 + y^2 + z^2, {x, 0, 1}, {y, 0, 2}, {z, 0, 10},
Method -> {SemiSymbolic, "AnalyticalVariables" -> {x}},
EvaluationMonitor :> Sow[{y, z}]]
During evaluation of In[66]:= SemiSymbolic::Integrate's result:{1/3+y^2+z^2}
Out[66]= {700., {{{1., 5.}, {1.35857, 5.}, {0.641431, 5.}, {1.94868,
5.}, {0.0513167, 5.}, {1., 6.79284}, {1., 3.20716}, {1.,
9.74342}, {1., 0.256584}, {1.94868, 9.74342}, {1.94868,
0.256584}, {0.0513167, 0.256584}, {0.0513167, 9.74342}, {0.311753,
1.55876}, {0.311753, 8.44124}, {1.68825, 1.55876}, {1.68825,
8.44124}}}}
In[69]:= ListPlot[res[[2, 1]], Frame -> True]
