Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. Join them; it only takes a minute:

Sign up
Here's how it works:
  1. Anybody can ask a question
  2. Anybody can answer
  3. The best answers are voted up and rise to the top

Find the matrix exponential of

  1. $$\begin{bmatrix}1& 1\\ 0& 1\end{bmatrix}.$$ Since this matrix is not diagonalizable, you will have to use the definition of the matrix exponential.

  2. $$\begin{bmatrix}-6& -2\\ 10&3\end{bmatrix}$$

share|cite|improve this question
    
try for small powers to see if there is any pattern.. – Praphulla Koushik Apr 10 '14 at 6:15

The first matrix can be factored as

$A=\begin{bmatrix}1& 1\\ 0& 1\end{bmatrix}=\begin{bmatrix}1& 0\\ 0& 1\end{bmatrix}+\begin{bmatrix}0& 1\\ 0& 0\end{bmatrix}=X+N$

So, $e^A=e^Xe^N=\begin{bmatrix}e& e\\ 0& e\end{bmatrix}$

The second is digonalizable:

$B=\begin{bmatrix}-6& -2\\ 3& 10\end{bmatrix}=\begin{bmatrix}-1/2& -5/2\\ 1& 1\end{bmatrix}\begin{bmatrix}-2& 0\\ 0& -1\end{bmatrix}\begin{bmatrix}-1/2& -5/2\\ 1& 1\end{bmatrix}^{-1}=PEP^{-1}$

So, $e^B=Pe^EP^{-1}=e^{-2}\begin{bmatrix}5-4e& 2(1-e)\\ 10(e-1)& 5e-4\end{bmatrix}$

share|cite|improve this answer

For a Jordan Block, we have $A = I + N$:

$$e^A = e^{j_\lambda} = e^{\lambda I + N} = e^{\lambda}\sum_{j=0}^{n-1} \dfrac{1}{j!}N^j$$

This gives:

$$e^A = e\begin{bmatrix}1& 1\\ 0& 1\end{bmatrix} = \begin{bmatrix}e& e\\ 0& e\end{bmatrix}$$

For the second, we can diagonalize the matrix as:

$$A = PJP^{-1} = \begin{bmatrix}-1& -2\\ 2& 5\end{bmatrix}\begin{bmatrix}-2& 0\\ 0& -1\end{bmatrix}\begin{bmatrix}-5& 2\\ 2& 1\end{bmatrix}$$

Hence:

$$e^A = Pe^JP^{-1} = \begin{bmatrix}\frac{5-4 e}{e^2} &-\frac{2 (e-1)}{e^2} \\ \frac{10 (e-1)}{e^2}&\frac{5 e-4}{e^2}\end{bmatrix}$$

share|cite|improve this answer
    
$$\Large 1000^{\text{th}} \text{ ANSWER}!!!$$ – amWhy Apr 10 '14 at 12:21

For the first matrix:

The definition of exponential matrices is $$e^A=I+A+\frac12 A^2 + \frac1{3!}A^3 + ...$$

Try and calculate $A^i$ for some small values of $i$ to see if you can find a simple patern.

For the second matrix: is this matrix diagonalizable?

share|cite|improve this answer

Your Answer

 
discard

By posting your answer, you agree to the privacy policy and terms of service.

Not the answer you're looking for? Browse other questions tagged or ask your own question.