Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. Join them; it only takes a minute:

Sign up
Here's how it works:
  1. Anybody can ask a question
  2. Anybody can answer
  3. The best answers are voted up and rise to the top

Let $(I_n)_{n \geq 1}$ be a sequence such that: $$I_n = \int_0^1 \frac{x^n}{4x + 5} dx$$ Evaluate the following limit: $$\lim_{n \to \infty} nI_n$$

All I've been able to find is that $(I_n)$ is decreasing and converges to $0$.

Thank you!

share|cite|improve this question
2  
Numerically, the answer looks like $\frac19$. – Simply Beautiful Art 17 hours ago
    
dominated convergence theorem will finish this one off quickly – tired 17 hours ago
5  
Note that $4I_n+5I_{n-1}=\frac{1}{n}$ and hence if $nI_n$ tends to a limit it must be $1/9$. – Paramanand Singh 17 hours ago
    
@ParamanandSingh +1 Wow! Nice comment, thank you for sharing. – MrYouMath 16 hours ago
    
@MrYouMath: I still need to show that $nI_n$ converges. – Paramanand Singh 16 hours ago

It is enough to apply integration by parts:

$$ n I_n = \int_{0}^{1}(n x^{n-1})\frac{x\,dx}{4x+5} = \color{red}{\frac{1}{9}}-\int_{0}^{1}\frac{5x^n}{(4x+5)^2}\,dx$$ and notice that: $$ \left|\int_{0}^{1}\frac{5x^n}{(4x+5)^2}\,dx\right|\leq \frac{1}{5}\int_{0}^{1}x^n\,dx = \frac{1}{5n+5}.$$

share|cite|improve this answer
4  
Simple is better. +1 – Paramanand Singh 14 hours ago
    
@ParamanandSingh As my username promotes. – Simply Beautiful Art 8 hours ago
    
Why was this downvoted? :( – S.C.B. 6 hours ago

Hint: Expand the integrand by using the geometric series:

$$\frac{x^n}{5(1+4x/5)}.$$

It is uniformly convergent on $|x|\leq 5/4$ and integrate the resulting polynomial.

share|cite|improve this answer

HINT:

If $\displaystyle I_m=\int_0^1\dfrac{x^m}{4x+5}dx,$

$\displaystyle4I_{n+1}=\int_0^1\dfrac{4x^{n+1}}{4x+5}dx=\int_0^1\dfrac{x^n(4x+5)-5x^n}{4x+5}dx=\int_0^1x^n\ dx-5I_n$

Now $\displaystyle4\cdot\dfrac{I_{n+1}}{n+1}+\dfrac{5n}{n+1}\cdot\dfrac{I_n}n=\dfrac{\int_0^1x^n\ dx}{n+1}$

Finally, $$\lim_{n\to\infty}\dfrac{I_{n+1}}{n+1}=\lim_{n\to\infty}\dfrac{I_n}n$$

share|cite|improve this answer

Expand the power series:

$$I_n=\int_0^1{1\over 5}\sum_{i=0}^\infty (-1)^i\left({4\over 5}\right)^ix^{n+i}$$

Since the function converges uniformly on $[0,1]$ and absolutely, we can pull the integral inside and evaluate and we get

$$I_n = {1\over 5}\sum_{i=0}^\infty(-1)^i\left({4\over 5}\right)^i{1\over n+i+1}$$

Multiply by $n$ and we get

$$nI_n = {1\over 5}\sum_{i=0}^n(-1)^{i}\left({4\over 5}\right)^{i}{n\over n+i+1}={1\over 5}\sum_{i=0}^\infty (-1)^{i}\left({4\over 5}\right)^{i}\left(1-{i+1\over n+i+1}\right)$$

We can evaluate the first sum easily enough

$${1\over 5}\sum_{i=0}^\infty (-1)^{i}\left({4\over 5}\right)^i={1\over 5+4}={1\over 9}$$

Now for the second term we can use absolute convergence to take the limit inside the sum and we get:

$$\lim_{n\to\infty} \sum_{i=0}^\infty(-1)^i\left({4\over 5}\right)^i{i+1\over n+i+1}=0=\sum_{i=0}^\infty(-1)^i\left({4\over 5}\right)^i(i+1)\cdot\lim_{n\to\infty}{1\over n+i+1}=0$$

so the end result is just ${1\over 9}$.

share|cite|improve this answer

$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ $\mrm{g}\pars{n,x} \equiv {\pars{1 - x}^{n} \over 9 - 4x}$

$\ds{\mrm{g}\pars{n,x} \equiv {\pars{1 - x}^{n} \over 9 - 4x}}$


This is an application of Laplace Method: \begin{align} \lim_{n \to \infty}\pars{n\int_{0}^{1}{x^{n} \over 4x + 5}\,\dd x} & = {1 \over 9}\lim_{n \to \infty}\bracks{n \int_{0}^{1}{\pars{1 - x}^{n} \over 1 - 4x/9}\,\dd x} = {1 \over 9}\lim_{n \to \infty}\pars{n\int_{0}^{\infty}\expo{-nx}\,\dd x} \\[5mm] & = \bbx{\ds{1 \over 9}} \end{align}

share|cite|improve this answer

Your Answer

 
discard

By posting your answer, you agree to the privacy policy and terms of service.

Not the answer you're looking for? Browse other questions tagged or ask your own question.