This can be done in $15$ seconds of purely mental modular arithmetic of small numbers. To obtain optimal speedup we use least magnitude remainders, e.g. $-1$ vs. $16\pmod{\!17}$ since doing so simplifies subsequent arithmetic. To reduce a decimal number mod $n$ we continually mod out the leading chunks of its digits. Since we allow negative remainders, we will encounter negative digits, which we mark by a comma. We prove $\ 3247\equiv 0\pmod{\!17}\,$ for practice.
$\begin{align}{\rm mod}\ 17\!:\qquad
&\,\ \color{#0a0}{32}\,47\\
\equiv\ &{\color{#0a0}{-2}},\color{#c00}47 \ \ \text{by }\ \ \ \ \ \,\color{#0a0}{32}\,\equiv\,\color{#0a0}{-2} \\
\equiv\ &\quad\ \ \color{#f84}{\bf 1}7\ \ \ \text{by }\ {\color{#0a0}{-2}},\color{#c00}4 \equiv\, \color{#0a0}{{-}2}(10)+\color{#c00}4\equiv -16\equiv \color{#f84}{\bf 1} \\[-.3em]
\text{Let's do the number in the OP}\qquad\ \ \ \ \\[-.3em]
&\,\ \color{#0a0}{29}\,01\\
\equiv\ & {\color{#0a0}{-5}},\color{#c00}01\,\ \text{ by }\quad\! \color{#0a0}{29\equiv -5} \\
\equiv\ &\quad\ \ \color{#f84}{\bf 1}1\ \ \text{ by }\ \color{#0a0}{{-}5},\color{#c00}0\equiv {\color{#0a0}{-5}(10)+\color{#c00}0}\equiv -50\equiv\color{#f84}{\bf 1}\\[-.2em]
\text{Similarly $\,2017\equiv 11\equiv\,\color{#08f}{-6}\ $ hence}\phantom{MM}\\[-.2em]
&\ 29\cdot 2901\cdot 2017\\
\equiv\ &(-5)(\color{#08f}{-6})(\color{#08f}{-6})\\
\equiv\ &(-5)\ \color{#08f} 2\\
\equiv\ &\ 7 \end{align}\qquad\qquad$