Mathematics Stack Exchange is a question and answer site for people studying math at any level and professionals in related fields. Join them; it only takes a minute:

Sign up
Here's how it works:
  1. Anybody can ask a question
  2. Anybody can answer
  3. The best answers are voted up and rise to the top

Let $ a,b,c,m,n,p\in \mathbb{R}^{*} $, $ a+m+n=p+b+c $. Solve the equation:

$$ \begin{vmatrix} x & a & b &c \\ a & x & b &c \\ m &n & x &p \\ m& n& p& x \end{vmatrix} =0 $$

I had used the Schur complement ($\det(M)=\det(A)\cdot (D-C\cdot A^{-1}\cdot B)$, for $ M= \begin{bmatrix} A &B \\ C & D \end{bmatrix}) $ but it didn't help me.

share|cite|improve this question
    
@mvw $\Bbb{R}^*=\Bbb{R}-\{0\}$, otherwise known as the multiplicative group of $\Bbb{R}$ – Noble Mushtak 9 hours ago
    
@mvw It has to be solved for x. – ztefelina 9 hours ago
    
I think $\mathbb{R}^\times$ is more typical. – copper.hat 9 hours ago
    
Hint: $x=a$ and $x=p$ are obvious roots. Once you factor those out, what's left is a quadratic in $x$. – dxiv 9 hours ago
    
OK, now I get it. So it could be an order four polynomial in $x$ and we hope (e.g. dxiv's hint) it turns out to be easier. – mvw 9 hours ago
up vote 14 down vote accepted

$$ \begin{vmatrix} x & a & b &c \\ a & x & b &c \\ m &n & x &p \\ m& n& p& x \end{vmatrix}=0 $$ Subtract the first row to the second row, subtract the third row from the fourth row: $$ \begin{vmatrix} x & a & b &c \\ a-x & x-a & 0 &0 \\ m &n & x &p \\ 0& 0& p-x& x-p \end{vmatrix}=0 $$ Factorize $(a-x)$ and $(x-p)$ out: $$ (a-x)(x-p)\begin{vmatrix} x & a & b &c \\ 1 & -1 & 0 &0 \\ m &n & x &p \\ 0& 0& -1& 1 \end{vmatrix}=0 $$ Add the first column to the second column: $$ (a-x)(x-p)\begin{vmatrix} x & a+x & b &c \\ 1 & 0 & 0 &0 \\ m &n+m & x &p \\ 0& 0& -1& 1 \end{vmatrix}=0 $$ Compute the determinant by using the second row: $$ (a-x)(x-p)\begin{vmatrix} a+x & b &c \\ n+m & x &p \\ 0& -1& 1 \end{vmatrix}=0 $$ Add the third column to the second column: $$ (a-x)(x-p)\begin{vmatrix} a+x & b+c &c \\ n+m & p+x &p \\ 0& 0& 1 \end{vmatrix}=0 $$

Expand the determinant by the last row:

$$ (a-x)(x-p)\begin{vmatrix} a+x & b+c \\ n+m & p+x \\ \end{vmatrix}=0 $$ Adding the first row to second row: $$ (a-x)(x-p)\begin{vmatrix} a+x & b+c \\ x+a+n+m & b+c+p+x \\ \end{vmatrix}=0 $$ Factorize $(x+a+n+m)$ out since $a+m+n=b+c+p$:

$$ (a-x)(x-p)(x+a+n+m)\begin{vmatrix} a+x & b+c \\ 1 & 1 \\ \end{vmatrix}=0 $$

$$(a-x)(x-p)(x+a+n+m)(x+a-b-c)=0$$

share|cite|improve this answer

The equation $$\begin{vmatrix} x & a & b &c \\ a & x & b &c \\ m &n & x &p \\ m& n& p& x \end{vmatrix} =0$$ is equivalent to $p_A(-x)=0$, where $p_A$ is the characteristic polynomial of $$A=\begin{pmatrix} 0 & a & b & c \\ a & 0 & b & c \\ m &n & 0 &p \\ m& n& p& 0 \end{pmatrix};$$hence the roots of your equation must be the opposite of the eigenvalues of $A$. The condition that $a+m+n=b+c+p$ is equivalent to $a-b-c=-m-n+p$, which tells you that $(1,1,-1,-1)$ is an eigenvector, with associated eigenvalue $a-b-c$. Moreover $-a$ and $-p$ are obviously eigenvalues, and the trace of the matrix is $0$; hence the sum of the eigenvalues is zero, which means that the last eigenvalue must be $b+c-a+a+p=b+c+p$.

So the solutions to your equation are $a$, $p$, $-(b+c+p)$ and $b+c-a$.

share|cite|improve this answer
    
nice, I was thinking of the intepretation of these solutions. thanks for the enlightnement. – Siong Thye Goh 8 hours ago

Subtract the first line from the second: $$\begin{vmatrix} x & a & b &c \\ a & x & b &c \\ m &n & x &p \\ m& n& p& x \end{vmatrix}=\begin{vmatrix} x-a & a-x & 0 &0 \\ a & x & b &c \\ m &n & x &p \\ m & n& p& x \end{vmatrix}=(x-a)\begin{vmatrix} 1 &-1 & 0 &0 \\ a & x & b &c \\ m &n & x &p \\ m & n& p& x \end{vmatrix}=$$ $1.$ Multiply the first by $-a$ and add on the second

$2.$ Multiply the first by $-m$ and add on the third

$3.$ Multiply the first by $-m$ and add on the forth

$$(x-a)\begin{vmatrix} 1 &-1 & 0 &0 \\ 0 & x+a & b &c \\ 0 &m+n & x &p \\ 0 &m+ n& p& x \end{vmatrix}=$$

Forth line minus third:

$$(x-a)\begin{vmatrix} 1 &-1 & 0 &0 \\ 0 & x+a & b &c \\ 0 &m+n & x &p \\ 0 &0& p-x& x-p \end{vmatrix}=(x-a)(x-p)\begin{vmatrix} 1 &-1 & 0 &0 \\ 0 & x+a & b &c \\ 0 &m+n & x &p \\ 0 &0& -1& 1 \end{vmatrix}=$$

Laplace theorem on the first column $$(x-a)(x-p)\begin{vmatrix} x+a & b &c \\ m+n & x &p \\ 0& -1& 1 \end{vmatrix}=0$$

Add second and third column on the second

$$(x-a)(x-p)\begin{vmatrix} x+a & b+c &c \\ m+n & x+p &p \\ 0& 0& 1 \end{vmatrix}=0$$

Laplace on the third line

$$(x-a)(x-p)\begin{vmatrix} x+a & b+c \\ m+n & x+p \\ \end{vmatrix}=0$$

Now $a+m+n=p+b+c=k$ then

$$(x-a)(x-p)\begin{vmatrix} x+a & k-p \\ k-a & x+p \\ \end{vmatrix}=0$$

Add first line on the second

$$(x-a)(x-p)\begin{vmatrix} x+a & k-p \\ x+k & x+k \\ \end{vmatrix}=(x-a)(x-p)(x+k)\begin{vmatrix} x+a & k-p \\ 1 & 1 \\ \end{vmatrix}=0$$

$$(x-a)(x-p)(x+k)(x+a+p-k)=0$$

$$(x-a)(x-p)(x+k)(x+a+p-k)=0$$

share|cite|improve this answer

The steps are: Subtract the first line from the second:

1.Multiply the first by −a−a and add on the second

  1. Multiply the first by −m−m and add on the third

  2. Multiply the first by −m−m and add on the 4th

Forth line minus third

Place theorem on the first column

Add second and 3rd column on the second

Place on the third line

Now a+m+n=p+b+c=ka+m+n=p+b+c=k then

Add 1st line on the second

share|cite|improve this answer

Your Answer

 
discard

By posting your answer, you agree to the privacy policy and terms of service.

Not the answer you're looking for? Browse other questions tagged or ask your own question.