We use the formula for $\tan n t$ in terms of $\tan t$ (when $n\in\mathbb N$).
(1) For odd prime $p$, let $ q=(p-1)/2.$ Let $x=\tan \pi/p.$ Then $0=\tan \pi=\tan p(\pi/p) = A(x)/B(x)$ where, for any $z,$ $$A(z)=\sum_{j=0}^q(-1)^j z^{2 j+1}\binom {p}{2 j + 1}$$ $$\text {and }\quad B(z)=\sum_{j=0}^q(-1)^j z^{ j}\binom {p}{2 j}.$$ By Eisenstein's Criterion, the polynomial $A(z)$ is irreducible over $\mathbb Q$, and $\deg(A(z))=p>1$, so any solution of $A(z)=0$ is irrational. Since $A(\tan \pi/p)=A(x)=0,$ we have $$\tan \pi/p\not \in\mathbb Q.$$
(2) Assume $\tan \pi m/n \in\mathbb Q,$ where $m, n\in\mathbb Z^+$, with $\gcd (m,n)=1$, and $n$ is divisible by an odd prime $p.$ Let $r\in\mathbb Z$ such that $m r\equiv 1 \pmod n.$ Then $m r\pi/n=\pi (k+1/n)$ where $k\in Z$, so $\tan m r \pi/n=\pm \tan \pi/n.$
By the formula for $\tan (\pi m/n)r$ in terms of $\tan \pi m/n,$ we have $\tan \pi/n\in\mathbb Q.$ Let $n=p s .$ By the formula for $\tan (\pi/n)s$ in terms of $\tan \pi/s,$ we have $\tan \pi/p\in\mathbb Q.$ This contradicts (1). Therefore $\tan \pi m/n\not \in\mathbb Q$.
(3) We can also show that $\tan m 2^{-m}\pi\not \in\mathbb Q$ when $m,n \in\mathbb N$ with odd $m$ and $n\geq 3$.
(4) Therefore if $z=\cos T+i \sin T$ is an $n$th root of $1$, for some $n\in \mathbb N$, and $z\not \in \{\exp (\pi i j/4) :j\in N\}$ then $\tan T\not \in\mathbb Q.$
In particular, if $\tan T=4/3,$ then $T\ne q\pi$ for any $q\in\mathbb Q,$ so $(3+4 i)/5$ is not an $n$th root of $1.$