Twitter | ಹುಡುಕು | |
Frank Harrell
Prof, Founding Chair of Biostatistics, Vanderbilt U. Expert Statistical Advisor, Office of Biostatistics, FDA CDER. Blog: Statistical Thinking -fharrell.com
7,143
ಟ್ವೀಟ್‌ಗಳು
78
ಹಿಂಬಾಲಿಸುತ್ತಿರುವವರು
9,043
ಹಿಂಬಾಲಕರು
ಟ್ವೀಟ್‌ಗಳು
Frank Harrell 9 ಗಂ.
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @raj_mehta @sarahkmels @thebyrdlab
What makes a calculation that uses a single arbitrary effect size valuable?
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell 9 ಗಂ.
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @MarkNBMD @adamcifu ಮತ್ತು 2 ಇತರರು
Don't see that logic, sorry.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell 9 ಗಂ.
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @Lizstuartdc @kinggary
Don't see this for cost-effectiveness because cost-effectiveness varies drastically by patient. On other point, what are the top examples of blanket public policy decisions?
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell ಮರುಟ್ವೀಟಿಸಿದ್ದಾರೆ
https://toot.cafe/@chartier 19 ಗಂ.
1. Shut down 2. Jail key decision makers and possibly some of the engineers involved 3. Give the money back to the people it abused (its users) 4. Build ethical replacements for its useful bits
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell 14 ಗಂ.
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @EBRheum @adamcifu
What are the problems with patient-specific absolute risk estimates?
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell 14 ಗಂ.
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @MarkNBMD @adamcifu ಮತ್ತು 2 ಇತರರು
Can't think of why NNT would be good in that context.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell 16 ಗಂ.
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @Lizstuartdc @kinggary
Still trying to find an example where population effect is clearly the best target. Since it's usually not, non-representative RCTs are generally better than representative observational studies.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell 16 ಗಂ.
Glad that has restarted this hot discussion on datamethods. I just posted a response that tries to generalize the question.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell 16 ಗಂ.
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @dailyzad @avigotsky @ken_rothman
I think that did something related to this. Perhaps he can comment.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell ಮರುಟ್ವೀಟಿಸಿದ್ದಾರೆ
🔥 Kareem Carr 🔥 ಡಿಸೆಂ 19
Statistically, machine learning has poor modeling practices which should limit generalizability. It doesn't. Why? For tasks like image recognition, all humans on the ML team understand ground truth; in healthcare/science tasks, it won't be the same. We can expect lots of failure.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell 17 ಗಂ.
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @dinga92
(1) Use splits other than the median and shows it matters, (2) Show that quantiles are divorced from biology, (3) Explain why a pre-specified statististical analysis plan was needed and since it wasn't written this is all a game.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell ಮರುಟ್ವೀಟಿಸಿದ್ದಾರೆ
Paul Bürkner 23 ಗಂ.
My Christmas present for the community: 2.7 is now on CRAN extending support for Gaussian processes and fixing a substantial performance bug in some post-processing methods among other new features and improvements.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell 17 ಗಂ.
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @venkmurthy @RogueRad ಮತ್ತು 6 ಇತರರು
I haven't commented on this because I don't like twitter for this. Too disjointed. See if you want to reopen this discussion on .
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell 17 ಗಂ.
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @venkmurthy @JohnTuckerPhD ಮತ್ತು 7 ಇತರರು
I wouldn't equate HTE with subgroups but rather interaction with treatment on an appropriate scale (a scale for which such interaction may be absent).
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell ಡಿಸೆಂ 19
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @DanLane911 @JAMANetworkOpen
What a wonderful graph. Love it.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell ಮರುಟ್ವೀಟಿಸಿದ್ದಾರೆ
Roger J. Lewis, MD, PhD ಡಿಸೆಂ 17
Please read—well worth your time. Challenges of Non–Intention-to-Treat Analyses | Research, Methods, Statistics | JAMA | JAMA Network
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell ಮರುಟ್ವೀಟಿಸಿದ್ದಾರೆ
Colin Begg ಡಿಸೆಂ 17
It's a big stretch to put such a positive spin on the wastage of resources that occurs when the scientific pathway is led astray building upon results that can't be replicated.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell ಡಿಸೆಂ 17
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @DanMarkMD
I'm not seeing that Dan. Think about linking continuous height and continuous weight into BMI (granted BMI is an imperfect index of obesity). The first thing is to understand risk. Up-front categorization of lab measurements doesn't accomplish that.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell ಡಿಸೆಂ 17
ಇವರಿಗೆ ಪ್ರತಿಕ್ರಿಯಿಸಲಾಗುತ್ತಿದೆ @GermsAndNumbers
Heartily disagree. It's a fundamental building block I use in many general functions.
Reply Retweet ಇಷ್ಟಪಡಿ
Frank Harrell ಡಿಸೆಂ 17
Glad to see questionable research practices elevated with respect to severity of harm to science
Reply Retweet ಇಷ್ಟಪಡಿ