Sign on

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· Full Refereed Journal Article (PDF/Postscript)
· arXiv e-print (arXiv:1002.2927)
· On-line Data
· References in the article
· Citations to the Article (31) (Citation History)
· Refereed Citations to the Article
· SIMBAD Objects (3)
· Associated Articles
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones
Authors:
Kitzmann, D.; Patzer, A. B. C.; von Paris, P.; Godolt, M.; Stracke, B.; Gebauer, S.; Grenfell, J. L.; Rauer, H.
Affiliation:
AA(Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany ), AB(Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany), AC(Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Rutherfordstr. 2, 12489 Berlin, Germany), AD(Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany), AE(Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Rutherfordstr. 2, 12489 Berlin, Germany), AF(Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany), AG(Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany), AH(Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany; Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Rutherfordstr. 2, 12489 Berlin, Germany)
Publication:
Astronomy and Astrophysics, Volume 511, id.A66, 14 pp. (A&A Homepage)
Publication Date:
02/2010
Origin:
EDP Sciences
Astronomy Keywords:
planetary systems, atmospheric effects, astrobiology
DOI:
10.1051/0004-6361/200913491
Bibliographic Code:
2010A&A...511A..66K

Abstract


Aims: The effects of multi-layered clouds in the atmospheres of Earth-like planets orbiting different types of stars are studied. The radiative effects of cloud particles are directly correlated with their wavelength-dependent optical properties. Therefore the incident stellar spectra may play an important role for the climatic effect of clouds. We discuss the influence of clouds with mean properties measured in the Earth's atmosphere on the surface temperatures and Bond albedos of Earth-like planets orbiting different types of main sequence dwarf stars. The influence of clouds on the position of the habitable zone around these central star types is discussed.
Methods: A parametric cloud model has been developed based on observations in the Earth's atmosphere. The corresponding optical properties of the cloud particles are calculated with the Mie theory accounting for shape effects of ice particles by the equivalent sphere method. The parametric cloud model is linked with a one-dimensional radiative-convective climate model to study the effect of clouds on the surface temperature and the Bond albedo of Earth-like planets in dependence of the type of central star.
Results: The albedo effect of the low-level clouds depends only weakly on the incident stellar spectra because the optical properties remain almost constant in the wavelength range of the maximum of the incident stellar radiation. The greenhouse effect of the high-level clouds on the other hand depends on the temperature of the lower atmosphere, which is itself an indirect consequence of the different types of central stars. In general the planetary Bond albedo increases with the cloud cover of either cloud type. An anomaly was found for the K and M-type stars however, resulting in a decreasing Bond albedo with increasing cloud cover for certain atmospheric conditions. Depending on the cloud properties, the position of the habitable zone can be located either farther from or closer to the central star. As a rule, low-level water clouds lead to a decrease of distance because of their albedo effect, while the high-level ice clouds lead to an increase in distance. The maximum variations are about 15 % decrease and 35 % increase in distance compared to the clear sky case for the same mean Earth surface conditions in each case.

Associated Articles

Part  1     Part  2     Part  3     Part  4    


Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

  New!

Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints