3 added 5 characters in body
source | link

Find large power of a non-diagonalisable matrix which is not diagonalisable.

If $A = \begin{bmatrix}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, then find $A^{30}$.

If $A = \begin{bmatrix}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, then find $A^{30}$.

The problem here is that it has only two eigenvectors, $\begin{bmatrix}0\\1\\1\end{bmatrix}$ corresponding to eigenvalue 1 $1$ and $\begin{bmatrix}0\\1\\-1\end{bmatrix}$ corresponding to eigenvalue   $-11$. So, it is not diagonalizable.

Is there any other way to compute the power?

Find large power of a matrix which is not diagonalisable.

If $A = \begin{bmatrix}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, then find $A^{30}$.

The problem here is that it has only two eigenvectors, $\begin{bmatrix}0\\1\\1\end{bmatrix}$ corresponding to eigenvalue 1 and $\begin{bmatrix}0\\1\\-1\end{bmatrix}$ corresponding to eigenvalue  -1. So, it is not diagonalizable.

Is there any other way to compute the power?

Find large power of a non-diagonalisable matrix

If $A = \begin{bmatrix}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, then find $A^{30}$.

The problem here is that it has only two eigenvectors, $\begin{bmatrix}0\\1\\1\end{bmatrix}$ corresponding to eigenvalue $1$ and $\begin{bmatrix}0\\1\\-1\end{bmatrix}$ corresponding to eigenvalue $-1$. So, it is not diagonalizable.

Is there any other way to compute the power?

2 edited tags
| link
1
source | link

Find large power of a matrix which is not diagonalisable.

If $A = \begin{bmatrix}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, then find $A^{30}$.

The problem here is that it has only two eigenvectors, $\begin{bmatrix}0\\1\\1\end{bmatrix}$ corresponding to eigenvalue 1 and $\begin{bmatrix}0\\1\\-1\end{bmatrix}$ corresponding to eigenvalue -1. So, it is not diagonalizable.

Is there any other way to compute the power?