By Frank Wilson, Chandler-Gilbert Community College; Scott Adamson, Chandler-Gilbert Community College; Trey Cox, Chandler-Gilbert Community College; and Alan O’Bryan, Arizona State University
What would you do if you discovered a popular approach to teaching inverse functions negatively affected student understanding of the underlying ideas? Would you continue to teach the problematic procedure or would you search for a better way to help students make sense of the mathematics?
A popular approach to finding the inverse of a function is to switch the \(x\) and \( y\) variables and solve for the \(y\) variable. The strategy of swapping variables is not grounded in mathematical operations and, we will argue, is nonsensical. Nevertheless, the procedure is so ingrained in textbooks and other curricula that many teachers accept it as mathematical truth without questioning is conceptual validity. As a result, students try to memorize the strategy but struggle to “accurately carry out mathematical procedures, understand why those procedures work, and know how they might be used and their results interpreted” (NCTM, 2009; Carlson & Oehrtman, 2005). As we will illustrate, this common process for finding the inverse of a function makes it harder for students to understand fundamental inverse function concepts.

